【題目】已知都是定義域為的連續(xù)函數.已知:滿足:①當時,恒成立;②都有.滿足:①都有;②當時,.若關于的不等式對恒成立,則的取值范圍是
A. B.
C. D.
【答案】D
【解析】
根據條件可得函數g(x)的奇偶性和單調性,利用條件可得函數f(x)的周期性,將不等式進行轉化為求函數最值恒成立即可得到結論.
∵函數g(x)滿足:當x>0時,g'(x)>0恒成立且對任意x∈R都有g(x)=g(﹣x),
∴函數g(x)為R上的偶函數且在[0,+∞)上為單調遞增函數,且有g|(x|)=g(x),
∴g[f(x)]≤g(a2﹣a+2),x∈恒成立|f(x)|≤|a2﹣a+2|恒成立,只要使得定義域內|f(x)|max≤|a2﹣a+2|min,
由f(x+)=f(x﹣),得f(x+2)=f(x),
即函數f(x)的周期T=2,
∵x∈[﹣,]時,f(x)=x3﹣3x,
求導得:f′(x)=3x2﹣3=3(x+1)(x﹣1),該函數過點(﹣,0),(0,0),(,0),
且函數在x=﹣1處取得極大值f(﹣1)=2,
在x=1處取得極小值f(1)=﹣2,
即函數f(x)在R上的最大值為2,
∵x∈,函數的周期是2,
∴當x∈時,函數f(x)的最大值為2,
由2≤|a2﹣a+2|,即2≤a2﹣a+2,
則a2﹣a≥0,
解得:a≥1或a≤0.
故答案為:D
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐PABC中,不能證明AP⊥BC的條件是( )
A. AP⊥PB,AP⊥PC
B. AP⊥PB,BC⊥PB
C. 平面BPC⊥平面APC,BC⊥PC
D. AP⊥平面PBC
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某射擊手在同一條件下進行射擊訓練,結果如下:
射擊次數n | 10 | 20 | 50 | 100 | 200 | 500 |
擊中靶心次數m | 8 | 19 | 44 | 92 | 178 | 455 |
擊中靶心頻率 |
(1)求出表中擊中靶心的各個頻率值;
(2)這個射擊手射擊一次,擊中靶心的概率可估計為多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)拋物線的開口向 、對稱軸為直線 、頂點坐標 ;
(2)當 時,函數有最 值,是 ;
(3)當 時,隨的增大而增大;當 時,隨的增大而減;
(4)該函數圖象可由的圖象經過怎樣的平移得到的?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設置了相應的分類垃圾箱.為調查居民生活垃圾分類投放情況,現隨機抽取了該市三類垃圾箱中總計1 000噸生活垃圾,數據統(tǒng)計如下(單位:噸):
“廚余垃圾”箱 | “可回收物”箱 | “其他垃圾”箱 | |
廚余垃圾 | 400 | 100 | 100 |
可回收物 | 30 | 240 | 30 |
其他垃圾 | 20 | 20 | 60 |
(1)試估計廚余垃圾投放正確的概率P;
(2)試估計生活垃圾投放錯誤的概率;
(3)假設廚余垃圾在“廚余垃圾”箱,“可回收物”箱,“其他垃圾”箱的投放量分別為a、b、c,其中a>0,a+b+c=600. 當數據a、b、c的方差s2最大時,寫出a、b、c的值(結論不要求證明),并求出此時s2的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知直線的參數方程為 (為參數),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,圓的極坐標方程為.
(I)求圓的直角坐標方程;
(II)若是直線與圓面的公共點,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】世界那么大,我想去看看,每年高考結束后,處于休養(yǎng)狀態(tài)的高中畢業(yè)生旅游動機強烈,旅游可支配收入日益增多,可見高中畢業(yè)生旅游是一個巨大的市場.為了解高中畢業(yè)生每年旅游消費支出(單位:百元)的情況,相關部門隨機抽取了某市的1000名畢業(yè)生進行問卷調查,并把所得數據列成如下所示的頻數分布表:
組別 | |||||
頻數 |
(1)求所得樣本的中位數(精確到百元);
(2)根據樣本數據,可近似地認為學生的旅游費用支出服從正態(tài)分布,若該市共有高中畢業(yè)生35000人,試估計有多少位同學旅游費用支出在 8100元以上;
(3)已知本數據中旅游費用支出在范圍內的8名學生中有5名女生,3名男生, 現想選其中3名學生回訪,記選出的男生人數為,求的分布列與數學期望.
附:若,則,,.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com