是公差的為-2的等差數(shù)列,如果,求的值.

答案:略
解析:

解:

=50132=82


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}是公差為d(d>0)的等差數(shù)列,且a2是a1與a4的等比中項,設Sn=a1+a3+a5+…+a2n-1(n∈N*).
(1)求證:
Sn
+
Sn+2
=2
Sn+1

(2)若d=
1
4
,令bn=
Sn
2n-1
,{bn}的前n項和為Tn,是否存在整數(shù)P、Q,使得對任意n∈N*,都有P<Tn<Q,若存在,求出P的最大值及Q的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是公差不為0的等差數(shù)列,a2=2,a8為a4和a16的等比中項.
(1)求數(shù)列{an}的通項公式;
(2)設bn=(
2
an+an+1
)2,求證b1+b2+b3+…+bn
n
n+1
(n∈N*)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是公差不為零的等差數(shù)列,a1=1,且a3是a1和a9的等比中項.
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{an}的前n項和為Snf(n)=
Sn(n+18)Sn+1
,試問當n為何值時,f(n)最大?并求出f(n)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年山東省濟寧一中高三第四次反饋練習數(shù)學試卷(理科)(解析版) 題型:解答題

已知數(shù)列{an}是公差不為0的等差數(shù)列,a2=2,a8為a4和a16的等比中項.
(1)求數(shù)列{an}的通項公式;
(2)設

查看答案和解析>>

科目:高中數(shù)學 來源:期末題 題型:填空題

有以下命題:設an1,an2,…anm是公差為d的等差數(shù)列{an}中任意m項,若(p∈N*,r∈N且r<m),則d;特別地,當r=0時,稱ap為an1,an2,…anm的等差平均項.
(1)已知等差數(shù)列{an}的通項公式為an=2n,根據(jù)上述命題,則a1,a3,a10,a18的等差平均項為:(    );
(2)將上述真命題推廣到各項為正實數(shù)的等比數(shù)列中:設an1,an2,…anm是公比為q的等比數(shù)列{an}中任意m項,若(p∈N*,r∈N且r<m),則(    );特別地,當r=0時,稱ap為an1,an2,…anm的等比平均項.

查看答案和解析>>

同步練習冊答案