如圖,在四面體ABOC中,OC⊥OA。OC⊥OB,∠AOB=120°,且OA=OB=OC=1
(Ⅰ)設(shè)P為AC的中點(diǎn),Q在AB上且AB=3AQ,證明:PQ⊥OA;
(Ⅱ)求二面角O-AC-B的平面角的余弦值。
本小題主要考查空間直線與直線、直線與平面的位置關(guān)系和二面角等基礎(chǔ)知識,同時考查空間想象能力、推理論證能力和運(yùn)算求解能力.
(Ⅰ)在平面OAB內(nèi)作ONOA交AB于N,連接CN,在△AOB中,且OA=OB,。在Rt△AON中,,。
在△ONB中,.。又AB=3AQ,Q為AN的中點(diǎn)。在△CAN中,分別為AC,AN的中點(diǎn),.由OAOC,OAON知:OA平面CON。又NC平面CON,OACN.由PQ//CN,知OAPQ.
(Ⅱ)連結(jié)PN,PO.
由OCOA,OCOB知:OC平面OAB。
又ON平面OAB, OCON.又由ONOA知:ON平面AOC. OP是NP在平面AOC內(nèi)的射影。
在等腰Rt△COA中,P為AC的中點(diǎn),ACOP。
根據(jù)三垂線定理,知:ACNP.
為二面角O-AC-B的平面角。
在等腰Rt△COA中,OC=OA=1, OP=。
在Rt△AON中,ON=OA=,
在Rt△PON中,PN==,
cos。
解法二:
(Ⅰ)取O為坐標(biāo)原點(diǎn),以O(shè)A,OC所在的直線為x軸,z軸,建立空間直角坐標(biāo)系O-xyz(如圖所示)。
則A(1,0,0),C(0,0,1),B。
。。
又由已知,可得
又..
.故。
(Ⅱ)記平面ABC的法向量,則由n,n,且=(1,0,-1)。
得故可取。
又平面OAC的法向量為e=(0,1,0)。
二面角O-AC-B的平面角是銳角,記為,則。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
AB | AQ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
AB | AQ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
AB | AQ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆福建省上學(xué)期高二期中考試?yán)砜茢?shù)學(xué)試卷 題型:解答題
如圖,在四面體ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1.
(1)設(shè)P為AC的中點(diǎn).證明:在AB上存在一點(diǎn)Q,使PQ⊥OA,并計(jì)算的值;
(2)求二面角O-AC-B的平面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com