(12分)已知函數(shù)
(I)若在處取得極值,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若存在,使得不等式成立,求實(shí)數(shù)的取值范圍。解析:(Ⅰ)由題意得,解得…………………2分
所以令則
在上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減……6分
(Ⅱ)因存在使得不等式成立
故只需要的最大值即可
① 若,則當(dāng)時(shí),在單調(diào)遞增
當(dāng)時(shí),
當(dāng)時(shí),不存在使得不等式成立…………………………9分
② 當(dāng)時(shí),隨x的變化情況如下表:
x | |||
+ | 0 | - | |
當(dāng)時(shí),由得
綜上得,即a的取值范圍是…………………………………………………12分
解法二:根據(jù)題意,只需要不等式在上有解即可,即在上有解,即不等式在上有解即可……………………………9分
令,只需要,而
故,即a的取值范圍是………………………………………………………12分年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)
(I)若 在其定義域是增函數(shù),求b的取值范圍;
(II)在(I)的結(jié)論下,設(shè)函數(shù)的最小值;
(III)設(shè)函數(shù)的圖象C1與函數(shù)的圖象C2交于點(diǎn)P、Q,過線段PQ的中點(diǎn)R作x軸的垂線分別交C1、C2于點(diǎn)M、N,問是否存在點(diǎn)R,使C1在M處的切線與C2在N處的切線平行?若存在,求出R的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)
(I)若 在其定義域是增函數(shù),求b的取值范圍;
(II)在(I)的結(jié)論下,設(shè)函數(shù)的最小值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三11月月考理科數(shù)學(xué)試卷 題型:解答題
(本題滿分14分) 已知函數(shù)
(I)若 在其定義域是增函數(shù),求b的取值范圍;
(II)在(I)的結(jié)論下,設(shè)函數(shù)的最小值;
(III)設(shè)函數(shù)的圖象C1與函數(shù)的圖象C2交于點(diǎn)P、Q,過線段PQ的中點(diǎn)R作x軸的垂線分別交C1、C2于點(diǎn)M、N,問是否存在點(diǎn)R,使C1在M處的切線與C2在N處的切線平行?若存在,求出R的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省高三12月月考試題文科數(shù)學(xué) 題型:解答題
(本小題滿分12分)
已知函數(shù)
(I)若在區(qū)間上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(II)若的一個(gè)極值點(diǎn),求上的最大值;
(III)在(II)的條件下,是否存在實(shí)數(shù)b,使得函數(shù)的圖象恰有3個(gè)交點(diǎn),若存在,請求出實(shí)數(shù)b的取值范圍;若不存在,試說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com