設a1,a2,…,an為正數(shù),求證:
a
2
1
a2
+
a
2
2
a3
+…+
a
2
n-1
an
+
a
2
n
a1
≥a1+a2+…+an
分析:不妨設a1>a2>…>an>0,則a12>a22>…>an2
1
a1
1
a2
<…
1
an
,由排序原理:亂序和≥反序和,可得結(jié)論.
解答:證明:不妨設a1>a2>…>an>0,則a12>a22>…>an2,
1
a1
1
a2
<…
1
an

由排序原理:亂序和≥反序和,可得:
a
2
1
a2
+
a
2
2
a3
+…+
a
2
n-1
an
+
a
2
n
a1
a12
a1
+
a22
a2
+…+
an2
an
=a1+a2+…+an
點評:本題考查不等式的證明,考查排序原理:亂序和≥反序和,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設A1、A2是橢圓
x2
9
+
y2
4
=1
=1的長軸兩個端點,P1、P2是垂直于A1A2的弦的端點,則直線A1P1與A2P2交點的軌跡方程為( 。
A、
x2
9
+
y2
4
=1
B、
y2
9
+
x2
4
=1
C、
x2
9
-
y2
4
=1
D、
y2
9
-
x2
4
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

10、設a1,a2,…,an是1,2,…,n的一個排列,把排在ai的左邊且比ai小的數(shù)的個數(shù)稱為ai的順序數(shù)(i=1,2,…,n).如在排列6,4,5,3,2,1中,5的順序數(shù)為1,3的順序數(shù)為0.則在由1、2、3、4、5、6、7、8這八個數(shù)字構(gòu)成的全排列中,同時滿足8的順序數(shù)為2,7的順序數(shù)為3,5的順序數(shù)為3的不同排列的種數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•吉安縣模擬)設a1,a2,…,an是正整數(shù)1,2,3…n的一個排列,令bj表示排在j的左邊且比j大的數(shù)的個數(shù),bj稱為j的逆序數(shù),如在排列3,5,1,4,2,6中,5的逆序數(shù)是0,2的逆序數(shù)是3,則由1至9這9個數(shù)字構(gòu)成的所有排列中,滿足1的逆序數(shù)是2,2的逆序數(shù)是3,5的逆序數(shù)是3的不同排列種數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:044

設A1、A2是橢圓+=1(a>b>0)長軸的兩個端點,P1P2是垂直于x軸的弦,求直線A1P1、A2P2的交點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A1、A2是橢圓+=1(a>b>0)長軸的兩個端點,P1P2是垂直于x軸的弦,求直線A1P1、A2P2的交點P的軌跡方程.

 

查看答案和解析>>

同步練習冊答案