如圖,已知△ABC中的兩條角平分線AD和CE相交于H,∠B=60°,F在AC上,且AE=AF.
(1)證明:B,D,H,E四點共圓;
(2)證明:CE平分∠DEF.
科目:高中數(shù)學 來源: 題型:
已知點A(2,0),拋物線C:x2=4y的焦點為F,射線FA與拋物線C相交于點M,與其準線相交于點N,則|FM|∶|MN|等于( )
(A)2∶ (B)1∶2 (C)1∶ (D)1∶3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,CD為△ABC外接圓的切線,AB的延長線交直線CD于點D,E、F分別為弦AB與弦AC上的點,且BC·AE=DC·AF,B、E、F、C四點共圓.
(1)證明:CA是△ABC外接圓的直徑;
(2)若DB=BE=EA,求過B、E、F、C四點的圓的面積與△ABC外接圓面積的比值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖所示,在正△ABC中,點D,E分別在邊AC, AB上,且AD=AC,
AE= AB,BD,CE相交于點F.
(1)求證:A,E,F,D四點共圓;
(2)若正△ABC的邊長為2,求A,E,F,D所在圓的半徑.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
凸函數(shù)的性質(zhì)定理:如果函數(shù)f(x)在區(qū)間D上是凸函數(shù),則對于區(qū)間D內(nèi)的任意x1,x2,…,xn,有≤f,已知函數(shù)y=sin x在區(qū)間
(0,π)上是凸函數(shù),則在△ABC中,sin A+sin B+sin C的最大值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
函數(shù)y=sin2x+2cos x(≤x≤)的最大值與最小值分別為( )
(A)最大值為,最小值為-
(B)最大值為,最小值為-2
(C)最大值為2,最小值為-
(D)最大值為2,最小值為-2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com