設(shè)F1、F2分別是橢圓
x2
25
+
y2
16
=1的左、右焦點(diǎn),P為橢圓上一點(diǎn),M是F1P的中點(diǎn),|OM|=3,則P點(diǎn)到橢圓左焦點(diǎn)的距離為(  )
A、4B、3C、2D、5
考點(diǎn):橢圓的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:由題意知,OM是△PF1F2的中位線,由|OM|=3,可得|PF2|=6,再由橢圓的定義求出|PF1|的值.
解答: 解:由題意知,OM是△PF1F2的中位線,
∵|OM|=3,∴|PF2|=6,
又|PF1|+|PF2|=2a=10,
∴|PF1|=4,
故選:A.
點(diǎn)評:本題考查橢圓的定義,以及橢圓的簡單性質(zhì)的應(yīng)用,判斷OM是△PF1F2的中位線是解題的關(guān)鍵,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某家庭注重家庭理財(cái),從2001年元旦起,每年元旦向銀行存款a萬元,年利率為r,辦理一年定期儲蓄,以后按約定自動轉(zhuǎn)存,計(jì)算此家庭到2014年元旦去取錢,所得的本利和為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)
的部分圖象如圖所示,若x1,x2∈(-
π
6
,
π
3
)
,且f(x1)=f(x2)(x1≠x2),則f(x1+x2)=(  )
A、1
B、
1
2
C、
2
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
x
+lnx-1(a是常數(shù),e≈=2.71828).
(1)若x=2是函數(shù)f(x)的極值點(diǎn),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)a=1時(shí),方程f(x)=m在x∈[
1
e
,e2]上有兩解,求實(shí)數(shù)m的取值范圍;
(3)求證:n∈N*,ln(en)>1+
1
2
+
1
3
+…+
1
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3sin(ωx+φ)(ω>0),若f(
π
3
)=3
,f(
π
12
)=0
,則ω的最小值為( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cosx(sinx-cosx)+1,x∈R
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[
π
8
,
4
]
上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是等比數(shù)列,對任意n∈N*都有an>0,如果a3(a3+a5)+a4(a4+a6)=25,則a3+a5=( 。
A、5B、10C、15D、20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,給出下列命題:
①-3是函數(shù)y=f(x)的極小值點(diǎn);
②-1是函數(shù)y=f(x)的極值點(diǎn);
③y=f(x)在x=0處切線的斜率小于零;
④y=f(x)在區(qū)間(-3,1)上單調(diào)遞增.
則正確命題的序號是( 。
A、①②B、①④C、②③D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,兩正方形ABCD、ABEF所成二面角大小為120°,求二面角D-AE-B的平面角的正切值.

查看答案和解析>>

同步練習(xí)冊答案