(2012•馬鞍山二模)己知在銳角△ABC中,角A,B,C所對(duì)的邊分別為a、b、c,向量
m
=(a2+b2-c2,ab),
n
=(sinC,-cosC),且
m
n

(I)求角C的大。
(II)當(dāng)c=1時(shí),求a2+b2的取值范圍.
分析:(Ⅰ)由
m
n
得:(a2+b2-c2)sinC-ab•cosC=0,結(jié)合余弦定理得sinC=
1
2
,從而求得 C的值.
(Ⅱ)由正弦定理得a=2sinA,b=2sinB=sin(150°-A)=2sin(A+30°).化簡(jiǎn) a2+b2 為 4+2
3
sin(2A-60°),根據(jù)角的范圍求出sin(2A-60°) 的范圍,即可求出
4+2
3
sin(2A-60°)的范圍,即為所求.
解答:解:(Ⅰ)由
m
n
得:(a2+b2-c2)sinC-ab•cosC=0,…(2分)
結(jié)合余弦定理得:sinC=
1
2
,∴C=30°(∵C是銳角).…(5分)
(Ⅱ)由正弦定理得:
a
sinA
=
b
sinB
=
c
sinC
=
1
sin30°
=2,…(7分)
∴a=2sinA,b=2sinB=sin(150°-A)=2sin(A+30°).
∴a2+b2=4sin2A+4 sin2(A+30°)=2(1-cos2A)+2[1-2cos(2A+60°)]=4-2cos2A-2cos60°cos2A+2sin60°sin2A
=4cos2A-cos2A+
3
sin2A=4+
3
sin2A-3cos2A=4+2
3
sin(2A-60°).…(10分)
∵△ABC是銳角三角形,由0°<A<90°及 0°<B=150°-A<90°,得:60°<A<90°,120°<2A<180°,
從而  60°<2A-60°<120°,
3
2
<sin( 2A-60°)≤1,3<2
3
sin( 2A-60°)≤2
3
,故7<4+2
3
sin(2A-60°)≤4+2
3

即a2+b2的取值范圍是(7,4+2
3
).…(12分)
點(diǎn)評(píng):本題主要考查正弦定理、余弦定理的應(yīng)用,三角函數(shù)的恒等變換,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•馬鞍山二模)設(shè)同時(shí)滿足條件:①
bn+bn+2
2
bn+1
;②bn≤M(n∈N+,M是與n無關(guān)的常數(shù))的無窮數(shù)列{bn}叫“嘉文”數(shù)列.已知數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn=
a
a-1
(an-1)
(a為常數(shù),且a≠0,a≠1).
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=
2Sn
an
+1
,若數(shù)列{bn}為等比數(shù)列,求a的值,并證明此時(shí){
1
bn
}
為“嘉文”數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•馬鞍山二模)現(xiàn)對(duì)某市工薪階層關(guān)于“樓市限購(gòu)政策”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽查了50人,他們?cè)率杖耄▎挝唬喊僭┑念l數(shù)分布及對(duì)“樓市限購(gòu)政策”贊成人數(shù)如下表:
月收入(單位百元) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75)
頻數(shù) 5 10 15 10 5 5
贊成人數(shù) 4 8 12 5 2 1
(Ⅰ)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并回答是否有99%的把握認(rèn)為月收入以5500元為分界點(diǎn)對(duì)“樓市限購(gòu)政策”的態(tài)度有差異?
月收入不低于55百元的人數(shù) 月收入低于55百元的人數(shù) 合計(jì)
贊成 a= b=
不贊成 c= d=
合計(jì)
(Ⅱ)若從月收入在[55,65)的被調(diào)查對(duì)象中隨機(jī)選取兩人進(jìn)行調(diào)查,求至少有一人不贊成“樓市限購(gòu)政策”的概率.
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.)
參考值表:
P(k2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•馬鞍山二模)已知橢圓C1
x2
m+2
+
y2
n
=1
與雙曲線C2
x2
m
-
y2
n
=1
共焦點(diǎn),則橢圓C1的離心率e的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•馬鞍山二模)設(shè)x1,x2是關(guān)于x的方程x2+mx+
1+m2
=0的兩個(gè)不相等的實(shí)數(shù)根,那么過兩點(diǎn)A(x1x12),B(x2,x22)的直線與圓x2+y2=2的位置關(guān)系是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案