已知(4,2)是直線l被橢圓
所截得的線段的中點,則l的方程是( )
A.x+2y+8=0 |
B.x+2y-8=0 |
C.x-2y-8=0 |
D.x-2y+8=0 |
設(shè)直線l與橢圓相交于A(x
1,y
1),B(x
2,y
2).
則
,且
,
兩式相減得
又x
1+x
2=8,y
1+y
2=4,
所以
,故直線l的方程為y-2=
(x-4),即x+2y-8=0.故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知P(x,y)為橢圓
上一點,F為橢圓C的右焦點,若點M滿足
且
,則
的最小值為( )
A. | B.3 | C. | D.1 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓E:
的右焦點為F(3,0),過點F的直線交橢圓E于A、B兩點.若AB的中點坐標為(1,﹣1),則E的方程為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在平面直角坐標系
中,如圖,已知橢圓E:
的左、右頂點分別為
、
,上、下頂點分別為
、
.設(shè)直線
的傾斜角的正弦值為
,圓
與以線段
為直徑的圓關(guān)于直線
對稱.
(1)求橢圓E的離心率;
(2)判斷直線
與圓
的位置關(guān)系,并說明理由;
(3)若圓
的面積為
,求圓
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓
的一個焦點與拋物線
的焦點重合,則該橢圓的離心率是( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
過橢圓
內(nèi)一點R(1,0)作動弦MN,則弦MN中點P的軌跡是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
橢圓M:
的左,右焦點分別為
,P為橢圓M上任一點,且
的最大值的取值范圍是
,其中
,則橢圓M的離心率e的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓
的左焦點為
與過原點的直線相交于
兩點,連接
,若
,則橢圓
的離心率
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,橢圓
經(jīng)過點P(1.
),離心率e=
,直線l的方程為x=4.
(1)求橢圓C的方程;
(2)AB是經(jīng)過右焦點F的任一弦(不經(jīng)過點P),設(shè)直線AB與直線l相交于點M,記PA,PB,PM的斜率分別為
.問:是否存在常數(shù)λ,使得
?若存在,求λ的值;若不存在,說明理由.
查看答案和解析>>