y=f(x)在R上連續(xù),在點x=x0處f′(x)=0,在點x=x1處f′(x)不存在,則下述命題中正確的是

A.x=x0及x=x1一定都是極值點                 

B.只有x=x0是極值點

C.x=x0與x=x1可能都不是極值點               

D.x=x0與x=x1中至少有一個是極值點

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于f(x)=4sin(2x+
π
3
)(x∈R)
,有下列命題:
①y=f(x)圖象關(guān)于直線x=-
12
對稱
②y=f(x)圖象關(guān)于(-
π
6
,0)對稱;
③y=f(x)圖象上相鄰最高點與最低點的連線與x軸的交點一定在y=f(x)的圖象上.
其中正確命題的序號有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+ax2+b(a,b∈R).
(Ⅰ)  若函數(shù)y=f(x)的圖象在點(1,2)處的切線的斜率等于1,求函數(shù)y=f(x)的解析式;
(Ⅱ)若x∈[0,1],則函數(shù)y=f(x)的圖象上的任意一點的切線的斜率為k,試討論|k|≤1成立的充要條件.
(Ⅲ)若函數(shù)y=f(x)的圖象上任意不同的兩點的連線的斜率小于1,求證:-
3
<a<
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+ax2+b(a,b∈R).
(I)當a>0時,求函數(shù)y=f(x)的極值;
(II)若函數(shù)y=f(x)的圖象上任意不同的兩點連線的斜率都小于2,求證:-
6
<a<
6
;
(III)對任意x0∈[0,1],y=f(x)的圖象在x=x0處的切線的斜率為k,求證:1≤a≤
3
是|k|≤1成立的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)y=f (x)滿足f ( x+2 )=-f (x)對所有實數(shù)x都成立,且在[-2,0]上單調(diào)遞增,a=f(
3
2
),b=f(
7
2
),c=f(log 
1
2
8),則a,b,c的由大到小順序是(用“>”連 結(jié))
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)=-x3+ax2+b(x∈R)的圖象是曲線C.

(1)當x=2時,函數(shù)f(x)取得極值0,求a、b的值;

(2)在(1)的條件下,求過點P(0,-4)且與曲線C相切的切線方程;

(3)若曲線C上任意兩點的連線的斜率都小于1,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案