已知平面α⊥平面β,α∩β=n,直線l?α,直線m?β,則下列說法正確的個(gè)數(shù)是( 。
①若l⊥n,l⊥m,則l⊥β;②若l∥n,則l∥β;③若m⊥n,l⊥m,則m⊥α.
A、0B、1C、2D、3
考點(diǎn):空間中直線與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:利用線面垂直的性質(zhì)逐個(gè)分析選擇.
解答: 解:因?yàn)槠矫姒痢推矫姒,α∩?n,直線l?α,直線m?β,
所以①若l⊥n,則l⊥β正確;②若l∥n,由線面平行的判定定理得到l∥β;正確;
③若m⊥n,由面面垂直的性質(zhì)可得m⊥α.正確;
故選D.
點(diǎn)評:本題考查了面面垂直的性質(zhì)以及線面垂直、平行的判定,熟悉線面關(guān)系是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(參考公式:[ln(1+x)]′=
1
1+x
)設(shè)函數(shù)f(x)=x-
ln(1+x)
1+x

(1)令N(x)=(1+x)2-1+ln(1+x),判斷并證明N(x)在(-1,+∞)上的單調(diào)性,求N(0);
(2)求f(x)定義域上的最小值;
(3)是否存在實(shí)數(shù)m、n滿足0≤m<n,使得f(x)在區(qū)間[m,n]上的值域也為[m,n]?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
20-10sinθ
cosθ
+10的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某實(shí)驗(yàn)室需購某種化工原料106千克,現(xiàn)在市場上該原料有兩種包裝,一種是每袋35千克,價(jià)格為140元;另一種是每袋24千克,價(jià)格為120元.在滿足需要的條件下,最少要花費(fèi)
 
元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

樣本數(shù)據(jù)3,9,5,2,6的中位數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若平面向量
a
=(1,x)和
b
=(2x+3,-x)互相平行,其中x∈R,則|
a
-
b
|=( 。
A、-2或0
B、2.5
C、2或2
5
D、2或10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x
+
1-x
在(0,1)上的最大值為( 。
A、
2
B、1
C、0
D、不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(1-cosx)=sin2x,則f(x)=
 

查看答案和解析>>

同步練習(xí)冊答案