若在區(qū)間[0,2]中隨機地取兩個數(shù),則這兩個數(shù)中較大的數(shù)大于
1
2
的概率是( 。
A.
9
16
B.
3
4
C.
15
16
D.
15
32
∵在區(qū)間[0,2]中隨機地取一個數(shù),這個數(shù)小于
1
2
的概率為
1
2
2
=
1
4
,
∴在區(qū)間[0,2]中隨機地取兩個數(shù),則這兩個數(shù)都小于
1
2
的概率為
1
4
×
1
4
=
1
16
,
∴這兩個數(shù)中較大的數(shù)大于
1
2
的概率是1-
1
16
=
15
16

故選:C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個盒子裝有六張卡片,上面分別寫著如下六個定義域為的函數(shù):,,,,.
(1)現(xiàn)從盒子中任取兩張卡片,將卡片上的函數(shù)相加得一個新函數(shù),求所得函數(shù)是奇函數(shù)的概率;
(2)現(xiàn)從盒子中進行逐一抽取卡片,且每次取出后均不放回,若取到一張記有偶函數(shù)的卡片則停止抽取,否則繼續(xù)進行,求抽取次數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

假設(shè)小明家訂了一份報紙,送報人可能在早上6:30至7:30之間把報紙送到小明家,小明爸爸離開家去工作的時間在早上7:00至8:00之間,問小明的爸爸在離開家前能得到報紙的概率是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在區(qū)間[-2,2]內(nèi)隨機取兩個數(shù)分別記為a,b,則使得a2+b2≤4的概率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若a是從區(qū)間[0,3]任取的一個數(shù),b是從區(qū)間[0,2]任取的一個數(shù),則關(guān)于x的一元二次方程x2+2ax+b2=0有實根的概率是( 。
A.
3
4
B.
2
3
C.
4
9
D.
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

山姆的意大利餡餅屋中設(shè)有一個投鏢靶該靶為正方形板.邊長為18厘米,掛于前門附近的墻上,顧客花兩角伍分的硬幣便可投一鏢并可有機會贏得一種意大利餡餅中的一個,投鏢靶中畫有三個同心圓,圓心在靶的中心,當(dāng)投鏢擊中半徑為1厘米的最內(nèi)層圓域時.可得到一個大餡餅;當(dāng)擊中半徑為1厘米到2厘米之間的環(huán)域時,可得到一個中餡餅;如果擊中半徑為2厘米到3厘米之間的環(huán)域時,可得到一個小餡餅,如果擊中靶上的其他部分,則得不到諂餅,我們假設(shè)每一個顧客都能投鏢中靶,并假設(shè)每個圓的周邊線沒有寬度,即每個投鏢不會擊中線上,試求一顧客將嬴得:
(1)一張大餡餅的概率;
(2)一張中餡餅的概率;
(3)一張小餡餅的概率;
(4)沒得到餡餅的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從1,2,3,4,5中任取2個不同的數(shù),事件A=“取到的2個數(shù)之和為偶數(shù)”,事件B=“取到的2個數(shù)均為偶數(shù)”,則P(B|A)=(  ).
A.           B.             C.            D .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某校教務(wù)處要對高三上學(xué)期期中數(shù)學(xué)試卷進行調(diào)研,考察試卷中某道填空題的得分情況.已知該題有兩空,第一空答對得3分,答錯或不答得0分;第二空答對得2分,答錯或不答得0分.第一空答對與否與第二空答對與否是相互獨立的.從該校1468份試卷中隨機抽取1000份試卷,其中該題的得分組成容量為1000的樣本,統(tǒng)計結(jié)果如下表:
第一空得分情況
 
第二空得分情況
得分
0
3
 
得分
0
2
人數(shù)
 198
 802
 
人數(shù)
 698
 302
(Ⅰ)求樣本試卷中該題的平均分,并據(jù)此估計該校高三學(xué)生該題的平均分.
(Ⅱ)該校的一名高三學(xué)生因故未參加考試,如果這名學(xué)生參加考試,以樣本中各種得分情況的頻率(精確到0.1)作為該同學(xué)相應(yīng)的各種得分情況的概率.試求該同學(xué)這道題得分的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知箱中共有6個球,其中紅球、黃球、藍球各2個.每次從該箱中取1個球 (有放回,每球取到的機會均等),共取三次.設(shè)事件A:“第一次取到的球和第二次取到的球顏色相同”,事件B:“三次取到的球顏色都相同”,則(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案