已知函數(shù)在處的切線方程為.
(1)求函數(shù)的解析式;
(2)若關(guān)于的方程恰有兩個不同的實根,求實數(shù)的值;
(3)數(shù)列滿足,,求的整數(shù)部分.
(1);(2)或;(3).
【解析】
試題分析:(1)由題意可得,又根據(jù)在處的切線方程為,故可從切線斜率與切點建立關(guān)于的方程組,可解得,從而;(2)由(1)及方程,參變分離后可得:,因此問題就等價于求使恰有兩個不同的,滿足的的值,令,
可得,從而當(dāng)時,取極小值,當(dāng)時,取極大值,因此可以大致畫出的示意圖,而問題則進(jìn)一步等價于直線與的圖像恰有兩個交點,通過示意圖易得當(dāng)或時滿足題意;(3)通過題意可知,需求得的值夾在哪兩個整數(shù)之間,由(1),可得,因此,而,
∴,∴,而將遞推公式可進(jìn)一步變形為,從而
,
又有,從而的整數(shù)部分為.
試題解析:(1)∵,∴, 由題意在處的切線方程為,則,∴;
(2)由(1),∴即,∴,因此問題即等價于存恰有兩個不同的,使,令,則,∴在上單調(diào)遞增,在,上單調(diào)遞減,∴當(dāng)時,取極小值,當(dāng)時,取極大值,又當(dāng)時,,當(dāng)時,,因此可畫出函數(shù)的大致示意圖如下,而問題就等價于直線與的圖像恰有兩個交點,
故要存在兩個不同的滿足,則需或.
(3)由(1),∴,∴
又∵,∴,
∴
由,得,∴,
即,
∴
,又∵,
綜上,,∴的整數(shù)部分為.
考點:1.導(dǎo)數(shù)的運(yùn)用;2.數(shù)列與不等式綜合.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆山東省濟(jì)寧市高二5月質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:選擇題
下列命題為真命題的是( )
A.若,則 B.若,則
C.若,則 D.若,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省濟(jì)寧市高二5月質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:選擇題
函數(shù)有極值的充要條件是 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省濟(jì)寧市高二5月質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:選擇題
雙曲線的頂點到其漸近線的距離等于( 。
A. B. C.1 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省濟(jì)寧市高二5月質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知F1、F2是橢圓+=1的兩焦點,經(jīng)點F2的的直線交橢圓于點A、B,若|AB|=5,則|AF1|+|BF1|等于( )
A.11 B.10 C.9 D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省濟(jì)寧市高二5月質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題
命題:關(guān)于的不等式對一切恒成立,命題:函數(shù)是增函數(shù),若中有且只有一個為真命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省濟(jì)寧市高二5月質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:選擇題
過雙曲線的左焦點作圓的兩條切線,切點分別為、,雙曲線左頂點為,若,則該雙曲線的離心率為( )
A. B. C.3 D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省高二下學(xué)期期中檢測理科數(shù)學(xué)試卷(解析版) 題型:選擇題
若在上可導(dǎo),,則____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省高二下學(xué)期期中質(zhì)量檢測試卷(解析版) 題型:填空題
在中,下列三角表達(dá)式:①,②,
③,④,其中恒為定值的有_____________(請將你認(rèn)為正確的式子的序號都填上).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com