已知函數(shù)在處取得極值.
(1)求實(shí)數(shù)的值;
(2)若關(guān)于的方程在區(qū)間上恰有兩個不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3)證明:對任意的正整數(shù),不等式都成立.
(1) (2) (3)先證
解析試題分析:(1)
時,取得極值,
故解得經(jīng)檢驗(yàn)符合題意.
(2)由知 由,得
令則在區(qū)間上恰有兩個不同的實(shí)數(shù)根等價于在區(qū)間上恰有兩個不同的實(shí)數(shù)根.
當(dāng)時,,于是在上單調(diào)遞增;
當(dāng)時,,于是在上單調(diào)遞減.
依題意有,
解得,
(3) 的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e4/1/1ajtt3.png" style="vertical-align:middle;" />,由(1)知,
令得,或(舍去), 當(dāng)時, ,單調(diào)遞增;
當(dāng)時, ,單調(diào)遞減. 為在上的最大值.
,故(當(dāng)且僅當(dāng)時,等號成立)
對任意正整數(shù),取得,
故.
(方法二)數(shù)學(xué)歸納法證明:
當(dāng)時,左邊,右邊,顯然,不等式成立.
假設(shè)時,成立,
則時,有.做差比較:
構(gòu)建函數(shù),則,
單調(diào)遞減,.
取,
即,亦即,
故
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)直線為曲線的切線,且經(jīng)過原點(diǎn),求直線的方程及切點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知實(shí)數(shù),函數(shù).
(Ⅰ)若函數(shù)有極大值32,求實(shí)數(shù)的值;
(Ⅱ)若對,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
曲線在點(diǎn)處的切線與x軸交點(diǎn)的橫坐標(biāo)為an.
(1)求an;
(2)設(shè),求數(shù)到的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=lnx-.
(1)當(dāng)時,判斷f(x)在定義域上的單調(diào)性;
(2)若f(x)在[1,e]上的最小值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求的極值;
(2)當(dāng)時,求的值域;
(3)設(shè),函數(shù),若對于任意,總存在,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)為常數(shù),已知函數(shù)在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù).
(1)設(shè)為函數(shù)的圖像上任意一點(diǎn),求點(diǎn)到直線的距離的最小值;
(2)若對任意的且,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)已知f(x)=在區(qū)間[-1,1]上是增函數(shù).
(Ⅰ)求實(shí)數(shù)a的值組成的集合A;
(Ⅱ)設(shè)關(guān)于x的方程f(x)=的兩個非零實(shí)根為x1、x2.試問:是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com