【題目】已知函數(),且的導數為.
(Ⅰ)若是定義域內的增函數,求實數的取值范圍;
(Ⅱ)若方程有3個不同的實數根,求實數的取值范圍.
科目:高中數學 來源: 題型:
【題目】一個盒子裝有六張卡片,上面分別寫著如下六個函數:
.
(Ⅰ)從中任意拿取張卡片,其中至少有一張卡片上寫著的函數為奇函數,在此條件下,求兩張卡片上寫著的函數相加得到的新函數為奇函數的概率;
(Ⅱ)現(xiàn)從盒子中逐一抽取卡片,且每次取出后均不放回,若取到一張寫有偶函數的卡片則停止抽取,否則繼續(xù)進行,求抽取次數的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一盒中裝有各色球12只,其中5個紅球,4個黑球,2個白球,1個綠球;從中隨機取出1球.求:
(1)取出的1球是紅球或黑球的概率;
(2)取出的1球是紅球或黑球或白球的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線的參數方程為(為參數),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系,已知直線的極坐標方程為, .
(Ⅰ)若直線與曲線交于不同的兩點, ,當時,求的值;
(Ⅱ)當時,求曲線關于直線對稱的曲線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx﹣ a(x﹣1)(a∈R).
(1)若a=﹣2,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若不等式f(x)<0對任意x∈(1,+∞)恒成立. (。┣髮崝礱的取值范圍;
(ⅱ)試比較ea﹣2與ae﹣2的大小,并給出證明(e為自然對數的底數,e=2.71828).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線: 的焦點也是橢圓: ()的一個焦點, 與的公共弦長為.
(Ⅰ)求的方程
(Ⅱ)過點的直線與相交于, 兩點,與相交于, 兩點,且, 同向.若求直線的斜率;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四面體ABCD中,AB和CD為對棱.設AB=a,CD=b,且異面直線AB與CD間的距離為d,夾角為θ.
(Ⅰ)若θ= ,且棱AB垂直于平面BCD,求四面體ABCD的體積;
(Ⅱ)當θ= 時,證明:四面體ABCD的體積為一定值;
(Ⅲ)求四面體ABCD的體積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com