a>b>1,P=
lga•lgb
,Q=
1
2
(lga+lgb),R=lg(
a+b
2
)
,則P,Q,R的大小關系是
 
分析:根據(jù)基本不等式的性質(zhì)進行判斷即可.
解答:解:∵a>b>1,∴l(xiāng)ga>lgb>0,
∵lg(
a+b
2
>lg
ab
=
1
2
(lga+lgb)
,
∴R>Q,
1
2
(lga+lgb)>
lga•lgb
,
∴Q>P,
綜上:P<Q<R.
故答案為:P<Q<R.
點評:本題主要考查基本不等式的應用,要求熟練掌握基本不等式的性質(zhì).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在直角坐標系中,已知射線OA:x-y=0(x≥0),OB:x+
3
y=0(x≥0),過點P(1,0)作直線分別交射線OA,OB于A,B點.
(1)當AB中點為P時,求直線AB的方程;
(2)在(1)的條件下,若A、B兩點到直線l:y=mx+2的距離相等,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:
x=2+t
y=1-at
(t為參數(shù)),與橢圓x2+4y2=16交于A、B兩點.
(1)若A,B的中點為P(2,1),求|AB|;
(2)若P(2,1)是弦AB的一個三等分點,求直線l的直角坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

A:如圖所示,已知AB為⊙O的直徑,AC為弦,OD∥BC,交AC于點D,BC=4cm,
(1)試判斷OD與AC的關系;
(2)求OD的長;
(3)若2sinA-1=0,求⊙O的直徑.
B:(選修4-4)已知直線l經(jīng)過點P(1,1),傾斜角α=
4

(1)寫出直線l的參數(shù)方程;
(2)設l與圓x2+y2=4相交于兩點A、B,求點P到A、B兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線l:
x=2+t
y=1-at
(t為參數(shù)),與橢圓x2+4y2=16交于A、B兩點.
(1)若A,B的中點為P(2,1),求|AB|;
(2)若P(2,1)是弦AB的一個三等分點,求直線l的直角坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江西省南昌二中高二(下)期中數(shù)學試卷(理科)(解析版) 題型:解答題

已知直線(t為參數(shù)),與橢圓x2+4y2=16交于A、B兩點.
(1)若A,B的中點為P(2,1),求|AB|;
(2)若P(2,1)是弦AB的一個三等分點,求直線l的直角坐標方程.

查看答案和解析>>

同步練習冊答案