某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產(chǎn)量是否與年齡有關(guān).現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,在將兩組工人的日平均生產(chǎn)件數(shù)分成5組:,,,,分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.


(1)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機抽取2人,求至少抽到一名“25周歲以下組”工人的頻率.
(2)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請你根據(jù)已知條件完成的列聯(lián)表,并判斷是否有的把握認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?

附表:

(1)(2)沒有的把握認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”

解析試題分析:(1)因為,所以抽取的100名工人中周歲以上組工人名,周歲以下組工人名。分別求出日平均生產(chǎn)件數(shù)不足件的工人中,周歲以上組工人和 周歲以下組各有幾人。然后用例舉法將所有基本事件一一例舉,根據(jù)古典概型概率公式可求其概率即其頻率。(2)根據(jù)頻率分布直方圖完成列聯(lián)表,根據(jù)公式計算,若則說明有的把握認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”,否則,無關(guān)。
試題解析:解:(1)由已知得,樣本中有周歲以上組工人名,周歲以下組工人
所以,樣本中日平均生產(chǎn)件數(shù)不足件的工人中,周歲以上組工人有(人),
記為,,;周歲以下組工人有(人),記為,
從中隨機抽取名工人,所有可能的結(jié)果共有種,他們是:,,,,,,,,,
其中,至少有一名“周歲以下組”工人的可能結(jié)果共有種,它們是:,,,,,,.故所求的概率: 
(2)由頻率分布直方圖可知,在抽取的名工人中,“周歲以上組”中的生產(chǎn)能手(人),“周歲以下組”中的生產(chǎn)能手(人),據(jù)此可得列聯(lián)表如下:

所以得:
因為,所以沒有的把握認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”
考點:1分層抽樣;2頻率分布直方圖;3古典概型概率公式;4獨立性檢驗。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

以下莖葉圖記錄了甲,乙兩組各三名同學(xué)在期末考試中的數(shù)學(xué)成績(滿分為100分).乙組記錄中有一個數(shù)字模糊,無法確認(rèn),假設(shè)這個數(shù)字具有隨機性,并在圖中以a表示.

(1)若甲,乙兩個小組的數(shù)學(xué)平均成績相同,求a的值.
(2)求乙組平均成績超過甲組平均成績的概率.
(3)當(dāng)a=2時,分別從甲,乙兩組同學(xué)中各隨機選取一名同學(xué),求這兩名同學(xué)的數(shù)學(xué)成績之差的絕對值為2分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

從發(fā)生汽車碰撞事故的司機中抽取2 000名司機.根據(jù)他們的血液中是否含有酒精以及他們是否對事故負(fù)有責(zé)任.將數(shù)據(jù)整理如下:

 
有責(zé)任
無責(zé)任
合計
有酒精
650
150
800
無酒精
700
500
1 200
合計
1 350
650
2 000
那么,司機對事故負(fù)有責(zé)任與血液中含有酒精是否有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某電視臺組織部分記者,用“10分制”隨機調(diào)查某社區(qū)居民的幸福指數(shù).現(xiàn)從調(diào)查人群中隨機抽取16名,如圖所示的莖葉圖記錄了他們的幸福指數(shù)的得分(以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉):

(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)若幸福指數(shù)不低于9.5分,則稱該人的幸福指數(shù)為“極幸!.求從這16人中隨機選取3人,至多有1人是“極幸!钡母怕;
(3)以這16人的樣本數(shù)據(jù)來估計整個社區(qū)的總體數(shù)據(jù),若從該社區(qū)(人數(shù)很多)任選3人,記表示抽到“極幸!钡娜藬(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

隨機抽取某中學(xué)高一級學(xué)生的一次數(shù)學(xué)統(tǒng)測成績得到一樣本,其分組區(qū)間和頻數(shù)是:,2;,7;,10;,x;[90,100],2.其頻率分布直方圖受到破壞,可見部分如下圖所示,據(jù)此解答如下問題.

(1)求樣本的人數(shù)及x的值;
(2)估計樣本的眾數(shù),并計算頻率分布直方圖中的矩形的高;
(3)從成績不低于80分的樣本中隨機選取2人,該2人中成績在90分以上(含90分)的人數(shù)記為,求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某觀賞魚池塘中養(yǎng)殖大量的紅鯽魚與金魚,為了估計池中兩種魚數(shù)量情況,養(yǎng)殖人員從池中捕出紅鯽魚和金魚各1000條,并給每條魚作上不影響其存活的記號,然后放回池內(nèi),經(jīng)過一段時間后,再從池中隨機捕出1000條魚,分別記錄下其中有記號的魚數(shù)目,再放回池中,這樣的記錄作了10次,將記錄數(shù)據(jù)制成如圖所示的莖葉圖.

(1)根據(jù)莖葉圖分別計算有記號的兩種魚的平均數(shù),并估計池塘中兩種魚的數(shù)量.
(2)隨機從池塘中逐條有放回地捕出3條魚,求恰好是1條金魚2條紅鯽魚的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了比較兩種治療失眠癥的藥(分別稱為A藥,B藥)的療效,隨機地選取20位患者服用A藥,20位患者服用B藥,這40位患者在服用一段時間后,記錄他們?nèi)掌骄黾拥乃邥r間(單位:h).試驗的觀測結(jié)果如下:
服用A藥的20位患者日平均增加的睡眠時間:

0.6
1.2
2.7
1.5
2.8
1.8
2.2
2.3
3.2
3.5
2.5
2.6
1.2
2.7
1.5
2.9
3.0
3.1
2.3
2.4
服用B藥的20位患者日平均增加的睡眠時間:
3.2
1.7
1.9
0.8
0.9
2.4
1.2
2.6
1.3
1.4
1.6
0.5
1.8
0.6
2.1
1.1
2.5
1.2
2.7
0.5
(1) 分別計算兩組數(shù)據(jù)的平均數(shù),從計算結(jié)果看,哪種藥的療效更好?
(2) 根據(jù)兩組數(shù)據(jù)完成下面莖葉圖,從莖葉圖看,哪種藥的療效更好?
A藥
 
B藥
 
0.
1.
2.
3.
 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù).

x
3
4
5
6
y
2.5
3
4
4.5
(1)請畫出上表數(shù)據(jù)的散點圖.
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程=bx+a.
(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?
(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某單位N名員工參加“社區(qū)低碳你我他”活動,他們的年齡在25歲至50歲之間,按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示,下表是年齡的頻率分布表.


(1)求正整數(shù)的值;
(2)現(xiàn)要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組的人數(shù)分別是多少?
(3)在(2)的條件下,從這6人中隨機抽取2人參加社區(qū)宣傳交流活動,求恰有1人在第3組的概率.

查看答案和解析>>

同步練習(xí)冊答案