已知函數(shù)f(x)=+,曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為x+2y-3=0.
(Ⅰ)求a、b的值;
(Ⅱ)證明:當(dāng)x>0,且x≠1時(shí),f(x)>
【答案】分析:(I)據(jù)切點(diǎn)在切線上,求出切點(diǎn)坐標(biāo);求出導(dǎo)函數(shù);利用導(dǎo)函數(shù)在切點(diǎn)處的值為切線的斜率及切點(diǎn)在曲線上,列出方程組,求出a,b的值.
(II)構(gòu)造新函數(shù),求出導(dǎo)函數(shù),通過(guò)研究導(dǎo)函數(shù)的符號(hào)判斷出函數(shù)的單調(diào)性,求出函數(shù)的最值,證得不等式.
解答:解:(I)
由于直線x+2y-3=0的斜率為-,且過(guò)點(diǎn)(1,1)
所以
解得a=1,b=1
(II)由(I)知f(x)=
所以
考慮函數(shù),

所以當(dāng)x≠1時(shí),h′(x)<0而h(1)=0,
當(dāng)x∈(0,1)時(shí),h(x)>0可得;
當(dāng)
從而當(dāng)x>0且x≠1時(shí),

點(diǎn)評(píng):本題考查導(dǎo)函數(shù)的幾何意義:在切點(diǎn)處的導(dǎo)數(shù)值為切線的斜率、考查通過(guò)判斷導(dǎo)函數(shù)的符號(hào)求出函數(shù)的單調(diào)性;通過(guò)求函數(shù)的最值證明不等式恒成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對(duì)稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對(duì)于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案