在人壽保險業(yè)中,要重視某一年齡的投保人的死亡率,經(jīng)過隨機抽樣統(tǒng)計,得到某市一個投保人能活到75歲的概率為0.60,試問:
(1)若有3個投保人, 求能活到75歲的投保人數(shù)的分布列;
(2)3個投保人中至少有1人能活到75歲的概率.(結果精確到0.01)

(1)


0
1
2
3
P




(2)0.94

解析試題分析:(1) 的可能取值為0,1,2,3,    1分
   5分
能活到75歲的投保人數(shù)的分布列如下:


0
1
2
3
P




7分
(2)3個投保人中至少有1人能活到75歲的概率
                11分
答: 3個投保人中至少有1人能活到75歲的概率是0.94    12分
考點:概率分布列
點評:求分布列的步驟:找到隨機變量可以取得值,依次求出各隨機變量值對應的概率,匯總得到分布列

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

某聯(lián)歡晚會舉行抽獎活動,舉辦方設置了甲、乙兩種抽獎方案,方案甲的中獎率為,中獎可以獲得2分;方案乙的中獎率為,中獎可以獲得3分;未中獎則不得分。每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,晚會結束后憑分數(shù)兌換獎品。
(Ⅰ)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為,求的概率;
(Ⅱ)若小明、小紅兩人都選擇方案甲或都選擇方案乙進行抽獎,問:他們選擇何種方案抽獎,累計得分的數(shù)學期望較大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了考察某種中藥預防流感效果,抽樣調查40人,得到如下數(shù)據(jù):服用中藥的有20人,其中患流感的有2人,而未服用中藥的20人中,患流感的有8人。
(1)根據(jù)以上數(shù)據(jù)建立列聯(lián)表;
(2)能否在犯錯誤不超過0.05的前提下認為該藥物有效?
參考


0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
  (

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2012年10月莫言獲得諾貝爾文學獎后,其家鄉(xiāng)山東高密政府準備投資6.7億元打造旅游帶,包括莫言舊居周圍的莫言文化體驗區(qū),紅高粱文化休閑區(qū),愛國主義教育基地等;為此某文化旅游公司向社會公開征集旅游帶建設方案,在收到的方案中甲、乙、丙三個方案引起了專家評委的注意,現(xiàn)已知甲、乙、丙三個方案能被選中的概率分別為,且假設各自能否被選中是無關的.
(1)求甲、乙、丙三個方案只有兩個被選中的概率;
(2)記甲、乙、丙三個方案被選中的個數(shù)為,試求的期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一個盒子中裝有4個編號依次為1、2、3、4的球,這4個球除號碼外完全相同,先從盒子中隨機取一個球,該球的編號為X,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為Y
(1)列出所有可能結果。 
(2)求事件A=“取出球的號碼之和小于4”的概率。
(3)求事件B=“編號X<Y”的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙兩人參加某種選拔測試.在備選的道題中,甲答對其中每道題的概率都是,乙能答對其中的道題.規(guī)定每次考試都從備選的道題中隨機抽出道題進行測試,答對一題加分,答錯一題(不答視為答錯)減分,至少得分才能入選.
(1)求甲得分的數(shù)學期望;
(2)求甲、乙兩人同時入選的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某項競賽分別為初賽、復賽、決賽三個階段進行,每個階段選手要回答一個問題.規(guī)定正確回答問題者進入下一階段競賽,否則即遭淘汰.已知某選手通過初賽、復賽、決賽的概率分別是,且各階段通過與否相互獨立.
(I)求該選手在復賽階段被淘汰的概率;
(II)設該選手在競賽中回答問題的個數(shù)為,求的分布列、數(shù)學期望和方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一個口袋中有質地、大小完全相同的5個球,編號分別為1,2,3,4,5,甲、乙兩人玩一種游戲:甲先摸出一個球,記下編號,放回后乙再摸一個球,記下編號,如果兩個編號的和為偶數(shù)算甲贏,否則算乙贏.
(Ⅰ)求甲贏且編號的和為6的事件發(fā)生的概率;
(Ⅱ)這種游戲規(guī)則公平嗎?試用概率說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知甲盒內有大小相同的1個紅球和3個黑球,乙盒內有大小相同的2個紅球和4個黑球.現(xiàn)從甲、乙兩個盒內各任取2個球.
(1)求取出的4個球均為黑球的概率;
(2)求取出的4個球中恰有1個紅球的概率;
(3)設為取出的4個球中紅球的個數(shù),求的分布列.

查看答案和解析>>

同步練習冊答案