已知隨機(jī)變量X的分布列如表:
X12345
P
1
15
1-3m2
1
6
m
4
15
1
3
則m的值為
 
考點(diǎn):離散型隨機(jī)變量及其分布列
專題:概率與統(tǒng)計(jì)
分析:利用隨機(jī)變量X的分布列的性質(zhì)求解.
解答: 解:由隨機(jī)變量X的分布列知:
1
15
+(1-3m2)+
1
6
m+
4
15
+
1
3
=1
,
解得m=
1
2
或m=-
4
9
(舍),
∴m=
1
2

故答案為:
1
2
點(diǎn)評(píng):本題考查概率的求法,解題時(shí)要認(rèn)真審題,注意隨機(jī)變量X的分布列的性質(zhì)的靈活運(yùn)用,是基題礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an=
Sn
n
+2(n-1)
(n∈N+).
(1)求證:數(shù)列{an}為等差數(shù)列,并分別寫出an和Sn關(guān)于n的表達(dá)式;
(2)設(shè)數(shù)列{
1
anan+1
}的前n項(xiàng)和為Tn,證明:
1
5
≤Tn
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn=an+1-2n+1+1,n∈N*,且a1=1
(1)證明數(shù)列{
an
2n
}是等差數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系x0y中,直線
x=a-t
y=t
(t為參數(shù))與圓
x=1+cosθ
y=sinθ
(θ為參數(shù))相切,切點(diǎn)在第一象限,則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列式子:1+
1
22
3
2
,1+
1
22
+
1
32
5
3
,1+
1
22
+
1
32
+
1
42
7
4
,…,根據(jù)以上式子可以猜想1+
1
22
+
1
32
+…+
1
20142
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(4
4
1
x
+
3x2
n展開式中的倒數(shù)第三項(xiàng)的二項(xiàng)式系數(shù)為45,則n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓C的極坐標(biāo)方程為ρ=2cos(θ+
π
4
),直線l的參數(shù)方程為
x=
2
t
y=
2
t+4
2
(其中t為參數(shù)),過直線l上的點(diǎn)P向圓C引切線,切點(diǎn)為A,則切線長PA的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=
4+3i
(1-2i)2
,則|z|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式an=2014sin
2
,則a1+a2+…+a2014=( 。
A、2012B、2013
C、2014D、2015

查看答案和解析>>

同步練習(xí)冊(cè)答案