已知有兩條直線x+my+6=0和(m-2)x+3y+2m=0互相平行,則實(shí)數(shù)m的值為
-1
-1
分析:由兩直線平行的性質(zhì)可得
1
m-2
=
m
3
6
2m
,由此求得實(shí)數(shù)m的值.
解答:解:由兩條直線x+my+6=0和(m-2)x+3y+2m=0互相平行可得 
a1
a2
b1
b2
≠ 
c1
c2
,即
1
m-2
m
3
6
2m
,
解得 m=-1,
故答案為-1.
點(diǎn)評:本題主要考查兩直線平行的性質(zhì),得到
1
m-2
=
m
3
6
2m
 是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y=(x+1)2與圓M:(x-1)2+(y-
12
)
2
=r2
(r>0)有一個(gè)公共點(diǎn)A,且在A處兩曲線的切線為同一直線l.
(Ⅰ)求r;
(Ⅱ)設(shè)m,n是異于l且與C及M都相切的兩條直線,m,n的交點(diǎn)為D,求D到l的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知有兩條直線x+my+6=0和(m-2)x+3y+2m=0互相平行,則實(shí)數(shù)m的值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知有兩條直線x+my+6=0和(m-2)x+3y+2m=0互相平行,則實(shí)數(shù)m的值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年北京市海淀區(qū)高二(上)期中數(shù)學(xué)試卷(解析版) 題型:填空題

已知有兩條直線x+my+6=0和(m-2)x+3y+2m=0互相平行,則實(shí)數(shù)m的值為   

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹