如圖1,在三棱錐P-ABC中,PA⊥平面ABC,AC⊥BC,D為側(cè)棱PC上一點,它的正(主)視圖和側(cè)(左)視圖如圖2所示.
(1)證明:AD⊥平面PBC;
(2)求三棱錐D-ABC的體積;
(3)在∠ACB的平分線上確定一點Q,使得PQ∥平面ABD,并求此時PQ的長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆廣東省高一下學(xué)期第一次段考文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖1,在三棱錐P-ABC中,PA⊥平面ABC,AC⊥BC,D為側(cè)棱PC上一點,它的正(主)視圖和側(cè)(左)視圖如圖2所示.
(1)證明:AD⊥平面PBC;
(2)求三棱錐D-ABC的體積;
(3)在∠ACB的平分線上確定一點Q,使得PQ∥平面ABD,并求此時PQ的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆湖北武漢部分重點中學(xué)高二上學(xué)期期末考試文科數(shù)學(xué)卷(解析版) 題型:解答題
(本小題13分)如圖1,在三棱錐P—ABC中,平面ABC,,D為側(cè)棱PC上一點,它的正(主)視圖和側(cè)(左)視圖如圖2所示。
(1)證明:平面PBC;
(2)求三棱錐D—ABC的體積;
(3)在的平分線上確定一點Q,使得平面ABD,并求此時PQ的長。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆廣東省高一5月月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
如圖1,在三棱錐P-ABC中,PA⊥平面ABC,AC⊥BC,D為側(cè)棱PC上一點,它的正(主)視圖和側(cè)(左)視圖如圖2所示.
(1) 證明:AD⊥平面PBC;
(2) 在∠ACB的平分線上確定一點Q,使得PQ∥平面ABD,并求此時PQ的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com