如圖,動點(diǎn)與兩定點(diǎn)、構(gòu)成,且,設(shè)動點(diǎn)的軌跡為.
(1)求軌跡的方程;
(2)設(shè)直線與軸相交于點(diǎn),與軌跡相交于點(diǎn),且,求的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓,過點(diǎn)且離心率為.
(1)求橢圓的方程;
(2)已知是橢圓的左右頂點(diǎn),動點(diǎn)M滿足,連接AM交橢圓于點(diǎn)P,在x軸上是否存在異于A、B的定點(diǎn)Q,使得直線BP和直線MQ垂直.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的中心和拋物線的頂點(diǎn)均為原點(diǎn),、的焦點(diǎn)均在軸上,過的焦點(diǎn)F作直線,與交于A、B兩點(diǎn),在、上各取兩個點(diǎn),將其坐標(biāo)記錄于下表中:
(1)求,的標(biāo)準(zhǔn)方程;
(2)若與交于C、D兩點(diǎn),為的左焦點(diǎn),求的最小值;
(3)點(diǎn)是上的兩點(diǎn),且,求證:為定值;反之,當(dāng)為此定值時,是否成立?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的一個頂點(diǎn)和兩個焦點(diǎn)構(gòu)成的三角形的面積為4.
(1)求橢圓的方程;
(2)已知直線與橢圓交于、兩點(diǎn),試問,是否存在軸上的點(diǎn),使得對任意的,為定值,若存在,求出點(diǎn)的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè):的準(zhǔn)線與軸交于點(diǎn),焦點(diǎn)為;橢圓以為焦點(diǎn),離心率.設(shè)是的一個交點(diǎn).
(1)當(dāng)時,求橢圓的方程.
(2)在(1)的條件下,直線過的右焦點(diǎn),與交于兩點(diǎn),且等于的周長,求的方程.
(3)求所有正實(shí)數(shù),使得的邊長是連續(xù)正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:+=1的離心率為,左焦點(diǎn)為F(-1,0),
(1)設(shè)A,B分別為橢圓的左、右頂點(diǎn),過點(diǎn)F且斜率為k的直線L與橢圓C交于M,N兩點(diǎn),若,求直線L的方程;
(2)橢圓C上是否存在三點(diǎn)P,E,G,使得S△OPE=S△OPG=S△OEG=?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓c:(a>b>0)的離心率為,過其右焦點(diǎn)F與長軸垂直的弦長為1,
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左右頂點(diǎn)分別為A,B,點(diǎn)P是直線x=1上的動點(diǎn),直線PA與橢圓的另一個交點(diǎn)為M,直線PB與橢圓的另一個交點(diǎn)為N,求證:直線MN經(jīng)過一定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,圓與直線相切于點(diǎn),與正半軸交于點(diǎn),與直線在第一象限的交點(diǎn)為.點(diǎn)為圓上任一點(diǎn),且滿足,動點(diǎn)的軌跡記為曲線.
(1)求圓的方程及曲線的方程;
(2)若兩條直線和分別交曲線于點(diǎn)、和、,求四邊形面積的最大值,并求此時的的值.
(3)證明:曲線為橢圓,并求橢圓的焦點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2013•浙江)如圖,點(diǎn)P(0,﹣1)是橢圓C1:+=1(a>b>0)的一個頂點(diǎn),C1的長軸是圓C2:x2+y2=4的直徑,l1,l2是過點(diǎn)P且互相垂直的兩條直線,其中l(wèi)1交圓C2于A、B兩點(diǎn),l2交橢圓C1于另一點(diǎn)D.
(1)求橢圓C1的方程;
(2)求△ABD面積的最大值時直線l1的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com