已知橢圓
的一個焦點為(0,2)則
的值為:( )
因為
是橢圓,所以m>0,化為標準方程得:
又因為一個焦點為(0,2)
。故選C
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知平面直角坐標系中點F(1,0)和直線
,動圓M過點F且與直線
相切。
(1)求M的軌跡L的方程;
(2)過點F作斜率為1的直線
交曲線L于A、B兩點,求|AB|的值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分13分)已知在直角坐標平面XOY中,有一個不在Y軸上的動點P(x,y),到定點F(0,
)的距離比它到X軸的距離多
,記P點的軌跡為曲線C
(I)求曲線C的方程;
(II)已知點M在Y軸上,且過點F的直線
與曲線C交于A、B兩點,若
為正三角形,求M點的坐標與直線
的方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的左右焦點為
,過點
且斜率為正數(shù)的直線
交橢圓
于
兩點,且
成等差數(shù)列。
(1)求橢圓
的離心率;
(2)若直線
與橢圓
交于
兩點,求使四邊形
的面積最大時的
值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知點
分別為橢圓
的左、右焦點,點
為橢圓上任意一點,
到焦點
的距離的最大值為
,且
的最大面積為
.
(I)求橢圓
的方程。
(II)點
的坐標為
,過點
且斜率為
的直線
與橢圓
相交于
兩點。對于任意的
是否為定值?若是求出這個定值;若不是說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題12分)已知橢圓的中心在原點,左焦點為
,右頂點為
,設點
.(1)求該橢圓的標準方程;
(2)若
是橢圓上的動點,過P點向橢圓的長軸做垂線,垂足為Q求線段PQ的中點
的軌跡方程;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的左、右焦點分別為
,且經(jīng)過定點
,
為橢圓
上的動點,以點
為圓心,
為半徑作圓
.
(1)求橢圓
的方程;
(2)若圓
與
軸有兩個不同交點,求點
橫坐標
的取值范圍;
(3)是否存在定圓
,使得圓
與圓
恒相切?若存在,求出定圓
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分16分)已知橢圓
:
的離心率為
,直線
:
與橢圓
相切.
(1)求橢圓
的方程;
(2)設橢圓
的左焦點為
,右焦點為
,直線
過點
且垂直與橢圓的長軸,動直線
垂直于直線
于點
,線段
的垂直平分線交
于點
,求點
的軌跡
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知
、
是橢圓
C:
(
)的兩個焦點,
P為橢圓
C上的一點,且
。若
的面積為9,則
_________。
查看答案和解析>>