如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成30o的二面角,如圖二,在二面角中.

(1) 求D、C之間的距離;
(2) 求CD與面ABC所成的角的大小;
(3) 求證:對于AD上任意點H,CH不與面ABD垂直。
(1)|CD|==
(2) =; (3) CH不與面ABD垂直。

試題分析:依題意,ABD=90o,建立如圖的坐標系使得△ABC在yoz平面上,△ABD與△ABC成30o的二面角, DBY=30o,又AB=BD=2,  A(0,0,2),B(0,0,0),
C(0,,1),D(1,,0),
    (1)|CD|==……… 5分
(2)x軸與面ABC垂直,故(1,0,0)是面ABC的一個法向量。
設CD與面ABC成的角為,而= (1,0,-1),
sin==
[0,],=; 8分
(3) 設=t= t(1,,-2)= (t,t,-2 t),
=+=(0,-,1) +(t,t,-2 t) = (t,t-,-2 t+1),
,則 (t,t-,-2 t+1)·(0,0,2)="0" 得t=,   10分
此時=(,-,0),
=(1,,0),·=-=-10, 不垂直,
即CH不可能同時垂直BD和BA,即CH不與面ABD垂直。 12分
點評:典型題,立體幾何題,是高考必考內容,往往涉及垂直關系、平行關系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,利用向量則能簡化證明過程。本題利用空間向量,簡化了證明過程,但對計算能力要求較高。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

將正方形ABCD沿對角線BD折成直二面角ABDC,有如下四個結論:
ACBD;     ②△ACD是等邊三角形;
AB與平面BCD成60°的角;   ④ABCD所成的角是60°.
其中正確結論的序號是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

正方體的棱線長為1,線段上有兩個動點E,F(xiàn),且,則三棱錐的體積為           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若a,b是兩條直線,α是一個平面,則下列命題正確的是(   )
A.若a∥b,則a平行于經(jīng)過b的任何平面
B.若a∥α,則a與α內任何直線平行
C.若a∥α,b∥α,則a∥b
D.若a∥b,a∥α,bα,則b∥α

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是平面內的一條定直線,是平面外的一個定點,動直線經(jīng)過點且與角,則直線與平面的交點的軌跡是
A.圓B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,邊長為4的正方形與正三角形所在的平面相互垂直,且
分別為、中點.

(1)求證: ;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,,,且,E、F分別為線段CD、AB上的點,且.將梯形沿EF折起,使得平面平面BCEF,折后BD與平面ADEF所成角正切值為

(Ⅰ)求證:平面BDE;
(Ⅱ)求平面BCEF與平面ABD所成二面角(銳角)的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在正方體中,分別是棱,的中點,則與平面所成的角的大小是      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知經(jīng)過同一點的N個平面,任意三個平面不經(jīng)過同一條直線.若這個平面將空間分成個部分,則          ,              .

查看答案和解析>>

同步練習冊答案