已知點P(0,一2),橢圓c:數(shù)學公式(a>b>0),橢圓的左右焦點分別為F1、F2,若三角形PF1F2的面積為2,且a2,b2的等比中項為6數(shù)學公式
(1)求橢圓的方程;
(2)若橢圓上有A、B兩點,使△PAB的重心為F1,求直線AB的方程;
(3)在(2)的條件下,設M為橢圓上一動點,求△MAB的面積的最大值及此時點M的坐標.

解:(1)由三角形PF1F2的面積為2,及點P(0,一2),可得a2-b2=1(a>b>0),
∵a2,b2的等比中項為6,
∴a2b2=72,∴a2=9,b2=8,∴;
(2)A(x1,y1),B(x2,y2),由橢圓上有A、B兩點,使△PAB的重心為F1,可得,
,,兩式相減得
AB的中點為(-,1),所以AB的方程為4x-3y+9=0.
(3)由(2)知,的最大值為,此時點M的坐標為
分析:(1)由三角形PF1F2的面積為2,及點P(0,一2)可得a,b的關系式,再利用a2,b2的等比中項為6,故可求a,b;
(2)充分利用條件橢圓上有A、B兩點,使△PAB的重心為F1可求;
(3)由于AB線段的長度為定值,所以要使△MAB的面積的最大值,只需點線距離最大即可.
點評:本題考查了橢圓標準方程的求解,利用了待定系數(shù)法,求解直線方程則利用了設而不求法,要注意細細體會.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點P(0,一2),橢圓c:
x2
a2
+
y2
b2
=1
(a>b>0),橢圓的左右焦點分別為F1、F2,若三角形PF1F2的面積為2,且a2,b2的等比中項為6
2

(1)求橢圓的方程;
(2)若橢圓上有A、B兩點,使△PAB的重心為F1,求直線AB的方程;
(3)在(2)的條件下,設M為橢圓上一動點,求△MAB的面積的最大值及此時點M的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•楊浦區(qū)一模)已知△ABC的三個頂點在拋物線Γ:x2=y上運動.
(1)求Γ的準線方程;
(2)已知點P的坐標為(2,6),F(xiàn)為拋物線Γ的焦點,求|AP|+|AF|的最小值,并求此時A點的坐標;
(3)若點A在坐標原點,BC邊過定點N(0,1),點M在BC上,且
AM
BC
=0
,求點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:022

已知點P(3,-2)到直線5x12y10=0的距離與到另一條直線5x12yc=0的距離相等,則c=____________

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省九校高三聯(lián)考數(shù)學試卷(文科)(解析版) 題型:解答題

已知點P(0,一2),橢圓c:(a>b>0),橢圓的左右焦點分別為F1、F2,若三角形PF1F2的面積為2,且a2,b2的等比中項為6
(1)求橢圓的方程;
(2)若橢圓上有A、B兩點,使△PAB的重心為F1,求直線AB的方程;
(3)在(2)的條件下,設M為橢圓上一動點,求△MAB的面積的最大值及此時點M的坐標.

查看答案和解析>>

同步練習冊答案