【題目】某校準備從高一年級的兩個男生和三個女生中選擇2個人去參加一項比賽.
(1)若從這5個學生中任選2個人,求這2個人都是女生的概率;
(2)若從男生和女生中各選1個人,求這2個人包括,但不包括的概率.
【答案】(1); (2).
【解析】
(1)寫出從5個學生中任選2個人的所有等可能基本事件,計算事件2個人都是女生所含的基本事件個數(shù);
(2)寫出從男生和女生中各選1個人的所有等可能基本事件,計算事件2個人包括,但不包括所含的基本事件個數(shù).
(1)由題意知,從5個學生中任選2個人,其所有等可能基本事件有:
,,,,,,,,,,共10個,
選2個人都是女生的事件所包含的基本事件有,,,共3個,
則所求事件的概率為.
(2)從男生和女生中各選1個人,其所有可能的結(jié)果組成的基本事件有,,,,,,共6個,
包括,但不包括的事件所包含的基本事件有,,共2個,
則所求事件的概率為.
科目:高中數(shù)學 來源: 題型:
【題目】已知O為坐標原點,F(xiàn)是橢圓C: =1(a>b>0)的左焦點,A,B分別為C的左,右頂點.P為C上一點,且PF⊥x軸,過點A的直線l與線段PF交于點M,與y軸交于點E.若直線BM經(jīng)過OE的中點,則C的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在幾何體ABCDE中,四邊形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G,F(xiàn)分別是線段BE,DC的中點.
(Ⅰ)求證:BE//平面ADE ;
(Ⅱ)求平面AEF與平面BEC所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(1)證明:PC⊥AD;
(2)求二面角A﹣PC﹣D的正弦值;
(3)設(shè)E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè),與是的子集,若,則稱為一個“理想配集”,那么符合此條件的“理想配集”的個數(shù)是________.(規(guī)定與是兩個不同的“理想配集”)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)四棱錐P-ABCD的底面不是平行四邊形,用平面去截此四棱錐,使得截面是平行四邊形,則這樣的平面( )
A.不存在
B.有且只有1個
C.恰好有4個
D.有無數(shù)多個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知m,n是兩條不同直線,,是兩個不同平面,則下列命題正確的是
A.若,垂直于同一平面,則與平行
B.若m,n平行于同一平面,則m與n平行
C.若,不平行,則在內(nèi)不存在與平行的直線
D.若m,n不平行,則m與n不可能垂直于同一平面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且橢圓上的一點與兩個焦點構(gòu)成的三角形周長為.
(1)求橢圓的方程;
(2)已知直線與橢圓相交于兩點.
①若線段中點的橫坐標為,求的值;
②在軸上是否存在點,使為定值?若是,求點的坐標;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com