如果|z-4-3i|≤3,求|z|的取值范圍.
考點:復(fù)數(shù)求模
專題:數(shù)系的擴充和復(fù)數(shù)
分析:設(shè)出復(fù)數(shù)z的代數(shù)形式,由|z-4-3i|≤3的幾何意義可知,復(fù)數(shù)z位于以(4,3)為圓心,以3為半徑的圓以及內(nèi)部,求出圓心到原點的距離后即可得到|z|的取值范圍.
解答: 解:設(shè)z=x+yi,
由|z-4-3i|≤3,得|(x-4)+(y-3)i|≤3.
所以復(fù)數(shù)z位于以(4,3)為圓心,以3為半徑的圓及其內(nèi)部.
而(4,3)到坐標(biāo)原點的距離為5.
所以|z|的取值范圍是[2,8].
故答案為:[2,8].
點評:本題考查了復(fù)數(shù)模的求法,考查了含有絕對值的幾何意義,運用了數(shù)形結(jié)合的解題思想,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求值:
(1)0.027-
1
3
-(-
1
7
)-2+256
3
4
-3-1+(
2
-1)0
(2)已知cos(
π
4
+x)=
3
5
,
17π
12
<x<
4
,求
sin2x+2sin2x
1-tanx
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若二項式(2x+
a
x
7的展開式中
1
x3
的系數(shù)是84,則實數(shù)a=( 。
A、2
B、
34
C、1
D、
2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c分別是△ABC中∠A,∠B,∠C所對邊的邊長,則直線sinA•x-ay-c=0與bx+sinB•y+sinC=0的位置關(guān)系是( 。
A、平行B、重合
C、垂直D、相交但不垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(π+α)=-
3
5
5
2
π<α<3π,tan(
π
2
-β)=
12
5
,0<β<
π
2
,求cos(2α-β)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某車間有120人,其中乘電車上班的84人,乘汽車上班32人,兩車都乘的有18人.求只乘汽車的人數(shù),不乘電車的人數(shù),乘車人數(shù),不乘車人數(shù),以及只乘一種車的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若log2(2m-3)=0,則elnm-1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={cos0°,sin270°},B={x|x2+x=0},則A∩B為( 。
A、{0,-1}B、{-1,1}
C、{-1}D、{0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義域和值域均為[-a,a](常數(shù)a>0)的函數(shù)y=f(x)和y=g(x)的圖象如圖所示,給出下列四個命題:
(1)方程f[g(x)]=0有且僅有三個解;
(2)方程g[f(x)]=0有且僅有三個解;
(3)方程f[f(x)]=0有且僅有九個解;
(4)方程g[g(x)]=0有且僅有一個解.
那么,其中正確命題的個數(shù)是( 。
A、(1)(4)
B、(2)(3)
C、(1)(3)
D、(2)(4)

查看答案和解析>>

同步練習(xí)冊答案