【題目】數(shù)列中,,,數(shù)列滿(mǎn)足.

1)求數(shù)列中的前四項(xiàng);

2)求證:數(shù)列是等差數(shù)列;

3)若,試判斷數(shù)列是否有最小項(xiàng),若有最小項(xiàng),求出最小項(xiàng).

【答案】1,,;(2)見(jiàn)解析;(3)有最小項(xiàng),最小項(xiàng)是.

【解析】

1)由數(shù)列的遞推公式,可計(jì)算出數(shù)列的前四項(xiàng),代入,即可計(jì)算出數(shù)列中的前四項(xiàng);

2)利用數(shù)列的遞推公式計(jì)算出為常數(shù),結(jié)合等差數(shù)列的定義可證明出數(shù)列是等差數(shù)列;

3)求出數(shù)列的通項(xiàng)公式,可求出,進(jìn)而得出,利用作商法判斷數(shù)列的單調(diào)性,從而可求出數(shù)列的最小項(xiàng).

1,

,,.

,

,;

2,而,

,.

因此,數(shù)列是首項(xiàng)為,公差為的等差數(shù)列;

3)由(2)得,則.

,顯然,

,

當(dāng)時(shí),,則;

當(dāng)時(shí),,則;

當(dāng)時(shí),,則

當(dāng)時(shí),,即.

,,

所以,數(shù)列有最小項(xiàng),最小項(xiàng)是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)部分圖象如圖所示:

1)求的解析式;

2)求的單調(diào)區(qū)間和對(duì)稱(chēng)中心坐標(biāo);

3)將的圖象向左平移個(gè)單位,再將橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,最后將圖象向上平移1個(gè)單位,得到函數(shù)的圖象,求函數(shù)上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若,求的單調(diào)區(qū)間;

2)若在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)滿(mǎn)足,則稱(chēng)函數(shù)為“函數(shù)”.

試判斷是否為“函數(shù)”,并說(shuō)明理由;

函數(shù)為“函數(shù)”,且當(dāng)時(shí),,求的解析式,并寫(xiě)出在上的單調(diào)遞增區(qū)間;

條件下,當(dāng)時(shí),關(guān)于的方程為常數(shù)有解,記該方程所有解的和為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)求不等式的解集;

(2)若不等式的解集非空,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某測(cè)試團(tuán)隊(duì)為了研究“飲酒”對(duì)“駕車(chē)安全”的影響,隨機(jī)選取名駕駛員先后在無(wú)酒狀態(tài)、酒后狀態(tài)下進(jìn)行“停車(chē)距離”測(cè)試.測(cè)試的方案:電腦模擬駕駛,以某速度勻速行駛,記錄下駕駛員的“停車(chē)距離”(駕駛員從看到意外情況到車(chē)子完全停下所需要的距離).無(wú)酒狀態(tài)與酒后狀態(tài)下的試驗(yàn)數(shù)據(jù)分別列于表1和表2.

表1

停車(chē)距離(米)

頻數(shù)

24

42

24

9

1

表2

平均每毫升血液酒精含量毫克

10

30

50

70

90

平均停車(chē)距離

30

50

60

70

90

回答以下問(wèn)題.

(1)由表1估計(jì)駕駛員無(wú)酒狀態(tài)下停車(chē)距離的平均數(shù);

(2)根據(jù)最小二乘法,由表2的數(shù)據(jù)計(jì)算關(guān)于的回歸方程;

(3)該測(cè)試團(tuán)隊(duì)認(rèn)為:駕駛員酒后駕車(chē)的平均“停車(chē)距離”大于(1)中無(wú)酒狀態(tài)下的停車(chē)距離平均數(shù)的倍,則認(rèn)定駕駛員是“醉駕”.請(qǐng)根據(jù)(2)中的回歸方程,預(yù)測(cè)當(dāng)每毫升血液酒精含量大于多少毫克時(shí)為“醉駕”?(精確到個(gè)位)

(附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 下列結(jié)論錯(cuò)誤的是

A. 命題:“若,則”的逆否命題是“若,則

B. ”是“”的充分不必要條件

C. 命題:“, ”的否定是“

D. 若“”為假命題,則均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是定義在上的奇函數(shù),且,若時(shí),有成立.

(1)判斷上的單調(diào)性,并用定義證明;

(2)解不等式

(3)若對(duì)所有的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案