【題目】已知點(diǎn)F為拋物線C:y2=4x的焦點(diǎn),過(guò)點(diǎn)F作斜率為k的直線l與拋物線交于A,B兩點(diǎn),與準(zhǔn)線交于點(diǎn)P,設(shè)點(diǎn)D為拋物線準(zhǔn)線與x軸的交點(diǎn).
(1)若k=﹣1,求△DAB的面積;
(2)若λ
,
μ
,證明:λ+μ為定值.
【答案】(1)4(2)證明見(jiàn)解析,定值為0
【解析】
(1)由直線與拋物線聯(lián)立得,根據(jù)
,求得點(diǎn)
到直線
的距離,進(jìn)而求得三角形的面積,得到答案;
(2)設(shè),聯(lián)立方程組,求得
,結(jié)合
λ
,
μ
,得到λ
,
,進(jìn)而求得
為定值,得到答案.
(1)由F的坐標(biāo)分別為(1,0),直線PF的斜率為1,
所以直線PF的方程為y=﹣(x﹣1),
設(shè)A,B兩點(diǎn)的坐標(biāo)分別為(x1,y1),(x2,y2),
由直線與拋物線聯(lián)立得x2﹣6x+1=0,
所以x1+x2=6,x1x2=1.
于是|AB|=x1+x2+2=8.
點(diǎn)D到直線x+y﹣1=0的距離d,
所以S4
;
(2)證明:設(shè)直線l:y=k(x﹣1).則P(﹣1,﹣2k),
聯(lián)立可得ky2﹣4y﹣4k=0,
,
∵λ
,
μ
,
所以(1﹣x1,﹣y1)=λ(x2﹣1,y2),(﹣1﹣x1,﹣2k﹣y1)=μ(x2+1,y2+2k),
∴λ,
.
∴λ+μ(定值).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄AP恒過(guò)定點(diǎn),且與直線
相切.
(Ⅰ)求動(dòng)圓P圓心的軌跡M的方程;
(Ⅱ)正方形ABCD中,一條邊AB在直線y=x+4上,另外兩點(diǎn)C、D在軌跡M上,求正方形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專(zhuān)業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間沒(méi)有發(fā)生在規(guī)模群體感染的標(biāo)志為“連續(xù)10天,每天新增疑似病例不超過(guò)7人”.根據(jù)過(guò)去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標(biāo)志的是
A. 甲地:總體均值為3,中位數(shù)為4 B. 乙地:總體均值為1,總體方差大于0
C. 丙地:中位數(shù)為2,眾數(shù)為3 D. 丁地:總體均值為2,總體方差為3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高考改革是教育體制改革中的重點(diǎn)領(lǐng)域和關(guān)鍵環(huán)節(jié),全社會(huì)極其關(guān)注.近年來(lái),在新高考改革中,打破文理分科的“”模式初露端倪.其中“
”指必考科目語(yǔ)文、數(shù)學(xué)、外語(yǔ),“
”指考生根據(jù)本人興趣特長(zhǎng)和擬報(bào)考學(xué)校及專(zhuān)業(yè)的要求,從物理、化學(xué)、生物、歷史、政治、地理六科中選擇
門(mén)作為選考科目,其中語(yǔ)、數(shù)、外三門(mén)課各占
分,選考科目成績(jī)采用“賦分制”,即原始分?jǐn)?shù)不直接用,而是按照學(xué)生分?jǐn)?shù)在本科目考試的排名來(lái)劃分等級(jí)并以此打分得到最后得分.假定
省規(guī)定:選考科目按考生成績(jī)從高到低排列,按照占總體
的,以此賦分
分、
分、
分、
分.為了讓學(xué)生們體驗(yàn)“賦分制”計(jì)算成績(jī)的方法,
省某高中高一(
)班(共
人)舉行了以此摸底考試(選考科目全考,單科全班排名,每名學(xué)生選三科計(jì)算成績(jī)),已知這次摸底考試中的物理成績(jī)(滿分
分)頻率分布直方圖,化學(xué)成績(jī)(滿分
分)莖葉圖如下圖所示,小明同學(xué)在這次考試中物理
分,化學(xué)
多分.
(1)求小明物理成績(jī)的最后得分;
(2)若小明的化學(xué)成績(jī)最后得分為分,求小明的原始成績(jī)的可能值;
(3)若小明必選物理,其他兩科在剩下的五科中任選,求小明此次考試選考科目包括化學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知p:方程x2+y2﹣4x+m2=0表示圓:q:方程1(m>0)表示焦點(diǎn)在y軸上的橢圓.
(1)若p為真命題,求實(shí)數(shù)m的取值范圍;
(2)若命題p、q有且僅有一個(gè)為真,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)安排4名畢業(yè)生到某企業(yè)的三個(gè)部門(mén)實(shí)習(xí),要求每個(gè)部門(mén)至少安排1人,其中甲大學(xué)生不能安排到
部門(mén)工作,安排方法有______種
用數(shù)字作答
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
,直線
與圓
交于
,
兩點(diǎn).
(1)求圓的直角坐標(biāo)方程及弦
的長(zhǎng);
(2)動(dòng)點(diǎn)在圓
上(不與
,
重合),試求
的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】4個(gè)不同的紅球和6個(gè)不同的白球放入同一個(gè)袋中,現(xiàn)從中取出4個(gè)球.
(1)若取出的紅球的個(gè)數(shù)不少于白球的個(gè)數(shù),則有多少不同的取法?
(2)取出一個(gè)紅球記2分,取出一個(gè)白球記1分,若取出4個(gè)球所得總分不少于5分,則有多少種不同取法.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面內(nèi)與兩定點(diǎn),
連線的斜率之積等于非零常數(shù)
的點(diǎn)的軌跡,加上
、
兩點(diǎn)所成的曲線
可以是圓、橢圓或雙曲線,給出以下四個(gè)結(jié)論:①當(dāng)
時(shí),曲線
是一個(gè)圓;②當(dāng)
時(shí),曲線
的離心率為
;③當(dāng)
時(shí),曲線
的漸近線方程為
;④當(dāng)曲線
的焦點(diǎn)坐標(biāo)分別為
和
時(shí),
的范圍是
.其中正確的結(jié)論序號(hào)為_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com