已知,函數(shù)
(1)若是單調(diào)函數(shù),求實數(shù)的取值范圍;
(2)若有兩個極值點,證明:

(1) (2)構(gòu)造函數(shù),利用單調(diào)性即得證.

解析試題分析:(1)   
,則關(guān)于的方程的判別式
函數(shù)上單調(diào)遞減   
,
,,不是單調(diào)函數(shù),,   
, 且是方程
的兩正根,則

    
,
, 
考點:利用導(dǎo)數(shù)研究函數(shù)的極值.
點評:本題考查了導(dǎo)數(shù)在解決函數(shù)極值和證明不等式中的應(yīng)用,解題時要認(rèn)真求導(dǎo),防止錯到起
點,還要有數(shù)形結(jié)合的思想,提高解題速度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)討論的奇偶性;
(2)當(dāng)時,求的單調(diào)區(qū)間;
(3)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知.
(1)時,求的極值;
(2)當(dāng)時,討論的單調(diào)性;
(3)證明:,其中無理數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知,求證:;
(2)已知>0(i=1,2,3,…,3n),求證:
+++…+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
①當(dāng)時,求函數(shù)在上的最大值和最小值;
②討論函數(shù)的單調(diào)性;
③若函數(shù)處取得極值,不等式恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若對于任意的,有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若為定義域上的單調(diào)函數(shù),求實數(shù)m的取值范圍;
(2)當(dāng)m=-1時,求函數(shù)的最大值;
(3)當(dāng),時,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若曲線在點處的切線與直線垂直,求實數(shù)的值.
(2)若,求的最小值;
(3)在(Ⅱ)上求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:函數(shù)
(1)求函數(shù)時的值域;
(2)求函數(shù)時的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案