【題目】已知等比數(shù)列中,依次是某等差數(shù)列的第5項、第3項、第2項,且,公比

(1)求;

(2)設,求數(shù)列的前項和

【答案】(1);(2).

【解析】

(Ⅰ)設某等差數(shù)列{cn}的公差為d,等比數(shù)列{an}的公比為q,依題意可求得q=,從而可求得數(shù)列{an}的通項公式;(Ⅱ)由(Ⅰ)知,于是可求得bn=n-6,繼而可得數(shù)列{bn}的前n項和Tn

(1)設某等差數(shù)列{cn}的公差為d,等比數(shù)列{an}的公比為q,

∵a3,a4, 分別是某等差數(shù)列{cn}的第5項、第3項和第2項,且a1=32,

∴a3=c5,a4=c3,=

∴c5=c3+2d=c2+3d,即a3=a4+2d=a5+3d,d= ,

,解得q=q=1,又q≠1,∴q=,

∴an=32×=

(Ⅱ)bn==-,所以數(shù)列是以-5為首項,以1為公差的等差數(shù)列,

∴Tn=

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的部分圖象如圖,該圖象與軸交于點,與軸交于點兩點,為圖象的最高點,且的面積為.

(1)求的解析式及其單調(diào)遞增區(qū)間;

(2)若,且,求的值.

(3)若將的圖象向右平移個單位,再將所得圖象上所有點的橫坐標伸長為原來的倍(縱坐標不變),得到函數(shù)的圖像.試求關于的方程的所有根的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為,若存在常數(shù),使得對任意的成立,則稱函數(shù)是“類周期函數(shù)”.

(1)判斷函數(shù),是否是“類周期函數(shù)”,并證明你的結(jié)論;

(2)求證:若函數(shù)是“類周期函數(shù)”,且是偶函數(shù),則是周期函數(shù);

(3)求證:當時,函數(shù)一定是“類周期函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .若gx)存在2個零點,則a的取值范圍是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,,分別為,的中點,,如圖1.以為折痕將折起,使點到達點的位置,如圖2.

如圖1 如圖2

(1)證明:平面平面

(2)若平面平面,求直線與平面所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知B島在A島正東方向距離12km處,C島在A島北偏東方向相離8km處.某船從A島出發(fā)向B島駛?cè),并在與B,C距離相等處待命.

(1)求此船航行的距離(精確到0.1km).

(2)若此船在待命處接到命令,以最少的時間行駛到C島,則此船應沿什么方向行駛?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為

(1)當時,求函數(shù)的單調(diào)遞減區(qū)間.

(2)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的函數(shù)是奇函數(shù).

1)求函數(shù)的值域;

2)若上單調(diào)遞減,根據(jù)單調(diào)性定義求實數(shù)b的取值范圍;

3)在(2)的條件下,若方程在區(qū)間上有且僅有兩個不同的根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù)在點處與軸相切

(1)求的值,并求的單調(diào)區(qū)間;

(2)當時,,求實數(shù)的取值范圍。

查看答案和解析>>

同步練習冊答案