【題目】設(shè)是定義在上的周期函數(shù),周期,對(duì)都有,且當(dāng)時(shí),,若在區(qū)間內(nèi)關(guān)于的方程恰有3個(gè)不同的實(shí)根,則的取值范圍是
A. B. C. D.
【答案】D
【解析】
結(jié)合函數(shù)的奇偶性、函數(shù)的周期性和函數(shù)的解析式繪制函數(shù)f(x)的圖像,原問(wèn)題等價(jià)于函數(shù)y=f(x)與y=loga(x+2)在區(qū)間(2,6]上有三個(gè)不同的交點(diǎn),數(shù)形結(jié)合有loga4<3,且loga8>3,求解不等式即可確定實(shí)數(shù)a的取值范圍.
∵對(duì)x∈R都有f(x)=f(x),∴函數(shù)f(x)是定義在R上的偶函數(shù),
在區(qū)間(2,6]內(nèi)關(guān)于x的方程f(x)loga(x+2)=0恰有3個(gè)不同的實(shí)數(shù)解,
∴函數(shù)y=f(x)與y=loga(x+2)在區(qū)間(2,6]上有三個(gè)不同的交點(diǎn),
∵當(dāng)x∈[2,0]時(shí),,
故函數(shù)圖像如圖所示,
又f(2)=f(2)=f(6)=3,
則有loga4<3,且loga8>3,
解得:.
故a的取值范圍是.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]:在直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,已知直線與曲線C交于不同的兩點(diǎn)A,B.
(1)求直線的普通方程和曲線C的直角坐標(biāo)方程;
(2)設(shè)P(1,2),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率為,焦距為.
(1)求的方程;
(2)若斜率為的直線與橢圓交于,兩點(diǎn)(點(diǎn),均在第一象限),為坐標(biāo)原點(diǎn).
①證明:直線的斜率依次成等比數(shù)列.
②若與關(guān)于軸對(duì)稱,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓的離心率為,左焦點(diǎn)為,過(guò)點(diǎn)且斜率為的直線交橢圓于兩點(diǎn).
(1)求橢圓的方程;
(2)求的取值范圍;
(3)在軸上,是否存在定點(diǎn),使恒為定值?若存在,求出點(diǎn)的坐標(biāo)和這個(gè)定值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求不等式的解集
(2)若函數(shù),且有解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的左焦點(diǎn)為,右頂點(diǎn)為,離心率為.已知是拋物線的焦點(diǎn), 到拋物線的準(zhǔn)線的距離為.
(I)求橢圓的方程和拋物線的方程;
(II)設(shè)上兩點(diǎn), 關(guān)于軸對(duì)稱,直線與橢圓相交于點(diǎn)(異于點(diǎn)),直線與軸相交于點(diǎn).若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓及直線:.
(1)證明:不論取什么實(shí)數(shù),直線與圓C總相交;
(2)求直線被圓C截得的弦長(zhǎng)的最小值及此時(shí)的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年國(guó)際籃聯(lián)籃球世界杯,將于2019年在北京、廣州、南京、上海、武漢、深圳、佛山、東莞八座城市舉行.為了宣傳世界杯,某大學(xué)從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對(duì)是否收看籃球世界杯賽事的情況進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:
(1)根據(jù)上表說(shuō)明,能否有的把握認(rèn)為收看籃球世界杯賽事與性別有關(guān)?
(2)現(xiàn)從參與問(wèn)卷調(diào)查的120名學(xué)生中,采用按性別分層抽樣的方法選取6人參加2019年國(guó)際籃聯(lián)籃球世界杯賽志愿者宣傳活動(dòng).
(i)求男、女學(xué)生各選取多少人;
(ii)若從這6人中隨機(jī)選取3人到校廣播站開展2019年國(guó)際籃聯(lián)籃球世界杯賽宣傳介紹,求恰好選到2名男生的概率.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從高一年級(jí)學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿分100分,成績(jī)均為不低于40分的整數(shù))分成六段:,,,,,,后得到如圖的頻率分
布直方圖.
(1)求圖中實(shí)數(shù)的值;
(2)若該校高一年級(jí)共有學(xué)生1000人,試估計(jì)該校高一年級(jí)期中考試數(shù)學(xué)成績(jī)不低于60分的人數(shù).
(3)若從樣本中數(shù)學(xué)成績(jī)?cè)?/span>,與,兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,試用列舉法求這2名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值大于10的槪率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com