【題目】已知拋物線關(guān)于軸對稱,頂點(diǎn)在坐標(biāo)原點(diǎn),直線經(jīng)過拋物線的焦點(diǎn).

(1)求拋物線的標(biāo)準(zhǔn)方程;

(2)若不經(jīng)過坐標(biāo)原點(diǎn)的直線與拋物線相交于不同的兩點(diǎn), ,且滿足,證明直線軸上一定點(diǎn),并求出點(diǎn)的坐標(biāo).

【答案】1 2)(20

【解析】試題分析:(1)由直線經(jīng)過拋物線的焦點(diǎn)可求出拋物線的標(biāo)準(zhǔn)方程;(2)由題意,直線不與軸垂直,設(shè)直線的方程為, ,聯(lián)立直線與拋物線的方程,由韋達(dá)定理得,再由,即可求出,從而求出定點(diǎn)坐標(biāo).

試題解析:(1)由已知,設(shè)拋物線的標(biāo)準(zhǔn)方程為

拋物線的標(biāo)準(zhǔn)方程為.

(2)由題意,直線不與軸垂直,設(shè)直線的方程為

.

聯(lián)立消去,得.

, , ,

又∵

(此時(shí)

∴直線的方程為

故直線軸上一定點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓C 的一個(gè)頂點(diǎn)與拋物線的焦點(diǎn)重合, 分別是橢圓的左、右焦點(diǎn),且離心率,過橢圓右焦點(diǎn)的直線l與橢圓C交于兩點(diǎn).

(1)求橢圓C的方程;

(2),求直線l的方程;

(3)是橢圓C經(jīng)過原點(diǎn)O的弦, ,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

Ⅰ)討論函數(shù)的單調(diào)性;

Ⅱ)若函數(shù)x=2處的切線斜率為,不等式對任意恒成立,求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的焦點(diǎn)在x軸上,焦距為,實(shí)軸長為2

(1)求雙曲線的標(biāo)準(zhǔn)方程與漸近線方程。

(2)若點(diǎn) 在該雙曲線上運(yùn)動,且 ,求以 , 為相鄰兩邊的平行四邊形 的頂點(diǎn) 的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓 ,點(diǎn).

(1)求經(jīng)過點(diǎn)且與圓相切的直線的方程;

(2)過點(diǎn)的直線與圓相交于、兩點(diǎn), 為線段的中點(diǎn),求線段長度的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將五個(gè)1,五個(gè)2,五個(gè)3,五個(gè)4,五個(gè)5共25個(gè)數(shù)填入一個(gè)5行5列的表格內(nèi)(每格填入一個(gè)數(shù)),使得同一行中任何兩數(shù)之差的絕對值不超過2,考查每行中五個(gè)數(shù)之和,記這五個(gè)和的最小值為,則的最大值為( )

A. B. 9 C. 10 D. 11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)袋中裝有個(gè)形狀大小完全相同的小球,球的編號分別為,,,,,

Ⅰ)若從袋中每次隨機(jī)抽取個(gè)球,有放回的抽取次,求取出的兩個(gè)球編號之和為的概率.

Ⅱ)若從袋中每次隨機(jī)抽取個(gè)球,有放回的抽取次,求恰有次抽到號球的概率.

Ⅲ)若一次從袋中隨機(jī)抽取個(gè)球,記球的最大編號為,求隨機(jī)變量的分布列.

Ⅳ)若從袋中每次隨機(jī)抽取個(gè)球,有放回的抽取次,記球的最大編號為,求隨機(jī)變量的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線軸相交于點(diǎn),點(diǎn)坐標(biāo)為,過點(diǎn)作直線的垂線,交直線于點(diǎn).記過、三點(diǎn)的圓為圓.

(1)求圓的方程;

(2)求過點(diǎn)與圓相交所得弦長為8的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二年級設(shè)計(jì)了一個(gè)實(shí)驗(yàn)學(xué)科的能力考查方案:考生從6道備選題中一次性隨機(jī)抽取3道題,并獨(dú)立完成所抽取的3道題.規(guī)定:至少正確完成其中2道題的便可通過該學(xué)科的能力考查.已知6道備選題中考生甲能正確完成其中4道題,另2道題不能完成;考生乙正確完成每道題的概率都為.

(Ⅰ)分別求考生甲、乙能通過該實(shí)驗(yàn)學(xué)科能力考查的概率;

(Ⅱ)記所抽取的3道題中,考生甲能正確完成的題數(shù)為,寫出的概率分布列,并求

查看答案和解析>>

同步練習(xí)冊答案