【題目】已知實(shí)數(shù)使得函數(shù)在定義域內(nèi)為增函數(shù);實(shí)數(shù)使得函數(shù)上存在兩個(gè)零點(diǎn),且

分別求出條件中的實(shí)數(shù)的取值范圍;

甲同學(xué)認(rèn)為“的充分條件”,乙同學(xué)認(rèn)為“的必要條件”,請(qǐng)判斷兩位同學(xué)的說法是否正確,并說明理由.

【答案】(1),(2)甲、乙兩同學(xué)的判斷均不正確,理由見解析

【解析】

1真時(shí),先求函數(shù)的導(dǎo)數(shù),令恒成立,整理得到恒成立,轉(zhuǎn)化為求函數(shù)的最小值;真時(shí),只需滿足即可;(2)根據(jù)(1)的結(jié)果,判斷兩個(gè)集合是否具有包含關(guān)系,根據(jù)集合的包含關(guān)系判斷充分必要條件.

解,的定義域?yàn)?/span>,

因?yàn)?/span>在定義域內(nèi)為增函數(shù),所以對(duì),恒有

整理得,恒成立。于是

因此滿足條件的實(shí)數(shù)的取值范圍是

因?yàn)?/span>的存在兩個(gè)零點(diǎn)且,所以

,解得

因此滿足條件的實(shí)數(shù)的取值范圍是

甲、乙兩同學(xué)的判斷均不正確,

因?yàn)?/span>,所以不是的充分條件,

因?yàn)?/span>,所以不是的必要條件。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某周末,鄭州方特夢(mèng)幻王國(guó)匯聚了八方來客. 面對(duì)該園區(qū)內(nèi)相鄰的兩個(gè)主題公園“千古蝶戀”和“西游傳說”,成年人和未成年人選擇游玩的意向會(huì)有所不同. 某統(tǒng)計(jì)機(jī)構(gòu)對(duì)園區(qū)內(nèi)的100位游客(這些游客只在兩個(gè)主題公園中二選一)進(jìn)行了問卷調(diào)查. 調(diào)查結(jié)果顯示,在被調(diào)查的50位成年人中,只有10人選擇“西游傳說”,而選擇“西游傳說”的未成年人有20人.

(1)根據(jù)題意,請(qǐng)將下面的列聯(lián)表填寫完整;

(2)根據(jù)列聯(lián)表的數(shù)據(jù),判斷是否有99%的把握認(rèn)為選擇哪個(gè)主題公園與年齡有關(guān).

附參考公式與表:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)||,實(shí)數(shù)m,n滿足0mn,且f(m)f(n),若f(x)[m2,n]上的最大值為2,則________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f(x1)-f(x2),且當(dāng)x>1時(shí),f(x)<0.

(1)證明:f(x)為單調(diào)遞減函數(shù).

(2)f(3)=-1,求f(x)[2,9]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù),若在定義域存在實(shí)數(shù),滿足,則稱為“局部奇函數(shù)”.

(1)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說明理由;

(2)設(shè)是定義在上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),記,是否存在整數(shù),使得關(guān)于的不等式有解?若存在,請(qǐng)求出的最小值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的方程為,其中.

(1)求證:直線恒過定點(diǎn);

(2)當(dāng)變化時(shí),求點(diǎn)到直線的距離的最大值;

(3)若直線分別與軸、軸的負(fù)半軸交于兩點(diǎn),求面積的最小值及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了保證食品的安全衛(wèi)生,食品監(jiān)督管理部門對(duì)某食品廠生產(chǎn)甲、乙兩種食品進(jìn)行了檢測(cè)調(diào)研,檢測(cè)某種有害微量元素的含量,隨機(jī)在兩種食品中各抽取了10個(gè)批次的食品,每個(gè)批次各隨機(jī)地抽取了一件,下表是測(cè)量數(shù)據(jù)的莖葉圖(單位:毫克).規(guī)定:當(dāng)食品中的有害微量元素的含量在時(shí)為一等品,在為二等品,20以上為劣質(zhì)品.

(1)用分層抽樣的方法在兩組數(shù)據(jù)中各抽取5個(gè)數(shù)據(jù),再分別從這5個(gè)數(shù)據(jù)中各選取2個(gè),求抽到食品甲包含劣質(zhì)品的概率和抽到食品乙全是一等品的概率;

(2)在概率和統(tǒng)計(jì)學(xué)中,數(shù)學(xué)期望(或均值)是基本的統(tǒng)計(jì)概念,它反映隨機(jī)變量取值的平均水平.變量的一切可能的取值與對(duì)應(yīng)的概率乘積之和稱為該變量的數(shù)學(xué)期望,記為.

參考公式:變量的取值為,對(duì)應(yīng)取值的概率,可理解為數(shù)據(jù)出現(xiàn)的頻率,

.

①每生產(chǎn)一件一等品盈利50元,二等品盈利20元,劣質(zhì)品虧損20元,根據(jù)上表統(tǒng)計(jì)得到甲、乙兩種食品為一等品、二等品、劣質(zhì)品的頻率,分別估計(jì)這兩種食品為一等品、 二等品、劣質(zhì)品的概率,若分別從甲、乙食品中各抽取1件,求這兩件食品各自能給該廠 帶來的盈利期望.

②若生產(chǎn)食品甲初期需要一次性投入10萬元,生產(chǎn)食品乙初期需要一次性投人16 萬元,但是以目前企業(yè)的狀況,甲乙兩條生產(chǎn)線只能投資其中一條.如果你是該食品廠負(fù)責(zé)人,以一年為期限,盈利為參照,請(qǐng)給出合理的投資方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),過原點(diǎn)的兩條直線分別與曲線交于異于原點(diǎn)的、兩點(diǎn),且,其中的傾斜角為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

(1)求的極坐標(biāo)方程;

(2)求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案