解答題:解答應(yīng)寫出文字說明,證明過程或推演步驟

如圖,正三棱柱ABC-A1B1C1中,D為線段A1C1中點.

(1)

求證:BC1//平面AB1D;

(2)

若AA1,二面角A-B1D-A1的大小為,求線段AB的長度.

答案:
解析:

(1)

解:證明:連A1B交AB1于點E,四邊形A1ABB1為矩形,

E為AB1的中點….1分

又D為線段A1C1中點,BC1//DE…………………………..3分

BC1平面AB1D,DE平面AB1D.BC1//平面AB1D……………………..6分

(2)

  解:法一、在正三角形A1B1C1中,D為A1C1中點,B1DA1C1,又平面A1B1C1平面A1ACC1,B1D平面A1ACC1,又AD平面A1ACC1,B1DAD,

即為二面角A-B1D-A1的平面角,.………….9分

在直角三角形AA1D中,

AA1 ……………………12分.

  法二、以點A為原點,AB為X軸正半軸,平面ABC內(nèi)過A垂直于AB的直線為Y軸,AA1為Z軸,建立空間直角坐標系,設(shè)AB=a,則A(0,0,0),A1(0,0,),B1(a,0,),D(,

設(shè)平面AB1D,則,故,

,得

………………………….9分

AA1平面A1B1C1,

解得a=2.…………………12分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:山西省實驗中學(xué)2006-2007學(xué)年度第一學(xué)期高三年級第三次月考 數(shù)學(xué)試題 題型:044

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟

(1)

(理)已知數(shù)列相鄰兩項anan+1是方程的兩根(n∈N+)且a1=2,Sn=c1+c2+…+cn,求an與S2n

(2)

(文)已知f(x)=x2-4x+3,又f(x-1),,f(x)是一個遞增等差數(shù)列{an}的前3項

(1)求此數(shù)列的通項公式

(2)求a2+a5+a8+…+a26的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省信陽市商城高中2006-2007學(xué)年度高三數(shù)學(xué)單元測試、不等式二 題型:044

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.

證明下列不等式:

(文)若xy,z∈R,ab,c∈R+,則z2≥2(xyyzzx)

(理)若x,yz∈R+,且xyzxyz,則≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省信陽市商城高中2006-2007學(xué)年度高三數(shù)學(xué)單元測試、不等式二 題型:044

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.

設(shè)f(x)=3ax2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0,求證:

(1)

方程f(x)=0有實根.

(2)

a>0且-2<<-1;

(3)

(理)方程f(x)=0在(0,1)內(nèi)有兩個實根.

(文)設(shè)x1,x2是方程f(x)=0的兩個實根,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省成都市名校聯(lián)盟2008年高考數(shù)學(xué)沖刺預(yù)測卷(四)附答案 題型:044

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.

已知函數(shù)f(x)的圖像與函數(shù)的圖像關(guān)于點A(0,1)對稱.

(1)求f(x)的解析式;

(2)(文)若g(x)=f(x)·x+ax,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍;

(理)若,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省成都市名校聯(lián)盟2008年高考數(shù)學(xué)沖刺預(yù)測卷(四)附答案 題型:044

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.

如圖,直角梯形ABCD中∠DAB=90°,ADBCAB=2,ADBC.橢圓CA、B為焦點且經(jīng)過點D

(1)建立適當(dāng)坐標系,求橢圓C的方程;

(2)(文)是否存在直線l與橢圓C交于M、N兩點,且線段MN的中點為C,若存在,求l與直線AB的夾角,若不存在,說明理由.

(理)若點E滿足,問是否存在不平行AB的直線l與橢圓C交于M、N兩點且|ME|=|NE|,若存在,求出直線lAB夾角的范圍,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案