【題目】武漢市掀起了轟轟烈烈的十日大會(huì)戰(zhàn),要在10天之內(nèi),對(duì)武漢市民做一次全員檢測,徹底摸清武漢市的詳細(xì)情況.某醫(yī)院為篩查冠狀病毒,需要檢驗(yàn)血液是否為陽性,現(xiàn)有份血液樣本,有以下兩種檢驗(yàn)方式:

方案①:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)1000.

方案②:按個(gè)人一組進(jìn)行隨機(jī)分組,把從每組個(gè)人抽來的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這個(gè)人的血就只需檢驗(yàn)一次(這時(shí)認(rèn)為每個(gè)人的血化驗(yàn));否則,若呈陽性,則需對(duì)這個(gè)人的血樣再分別進(jìn)行一次化驗(yàn)這樣,該組個(gè)人的血總共需要化驗(yàn). 假設(shè)此次檢驗(yàn)中每個(gè)人的血樣化驗(yàn)呈陽性的概率為,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.

1)設(shè)方案②中,某組個(gè)人中每個(gè)人的血化驗(yàn)次數(shù)為,求的分布列;

2)設(shè). 試比較方案②中,分別取2,3,4時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗(yàn)次數(shù)最多可以減少多少次?(最后結(jié)果四舍五入保留整數(shù))

【答案】1)分布列見解析;(2,總次數(shù)為690次;,總次數(shù)為604次;,次數(shù)總為594次;減少406

【解析】

1)設(shè)每個(gè)人的血呈陰性反應(yīng)的概率為,可得,再由相互獨(dú)立事件的概率求法可得個(gè)人呈陰性反應(yīng)的概率為,呈陽性反應(yīng)的概率為,隨機(jī)變量即可得出分布列.

2)由(1)的分布列可求出數(shù)學(xué)期望,然后令求出期望即可求解.

1)設(shè)每個(gè)人的血呈陰性反應(yīng)的概率為,則.

所以個(gè)人的血混合后呈陰性反應(yīng)的概率為,呈陽性反應(yīng)的概率為,

依題意可知,

所以的分布列為:

2)方案②中,結(jié)合(1)知每個(gè)人的平均化驗(yàn)次數(shù)為:

所以當(dāng)時(shí), ,

此時(shí)1000人需要化驗(yàn)的總次數(shù)為690次,

,此時(shí)1000人需要化驗(yàn)的總次數(shù)為604次,

時(shí), ,此時(shí)1000人需要化驗(yàn)的次數(shù)總為594次,

時(shí)化驗(yàn)次數(shù)最多,時(shí)次數(shù)居中,時(shí)化驗(yàn)次數(shù)最少.

而采用方案①則需化驗(yàn)1000次,故在這三種分組情況下,相比方案①,

當(dāng)時(shí)化驗(yàn)次數(shù)最多可以平均減少1000-594=406.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】成都七中為了解班級(jí)衛(wèi)生教育系列活動(dòng)的成效,對(duì)全校40個(gè)班級(jí)進(jìn)行了一次突擊班級(jí)衛(wèi)生量化打分檢查(滿分100分,最低分20分).根據(jù)檢查結(jié)果:得分在評(píng)定為優(yōu),獎(jiǎng)勵(lì)3面小紅旗;得分在評(píng)定為,獎(jiǎng)勵(lì)2面小紅旗;得分在評(píng)定為,獎(jiǎng)勵(lì)1面小紅旗;得分在評(píng)定為,不獎(jiǎng)勵(lì)小紅旗.已知統(tǒng)計(jì)結(jié)果的部分頻率分布直方圖如下圖:

1)依據(jù)統(tǒng)計(jì)結(jié)果的部分頻率分布直方圖,求班級(jí)衛(wèi)生量化打分檢查得分的中位數(shù);

2)學(xué)校用分層抽樣的方法,從評(píng)定等級(jí)為優(yōu)、、、的班級(jí)中抽取10個(gè)班級(jí),再從這10個(gè)班級(jí)中隨機(jī)抽取2個(gè)班級(jí)進(jìn)行抽樣復(fù)核,記抽樣復(fù)核的2個(gè)班級(jí)獲得的獎(jiǎng)勵(lì)小紅旗面數(shù)和為,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新能源汽車已經(jīng)走進(jìn)我們的生活,逐漸為大家所青睞.現(xiàn)在有某品牌的新能源汽車在甲市進(jìn)行預(yù)售,預(yù)售場面異;鸨试摻(jīng)銷商采用競價(jià)策略基本規(guī)則是:①競價(jià)者都是網(wǎng)絡(luò)報(bào)價(jià),每個(gè)人并不知曉其他人的報(bào)價(jià),也不知道參與競價(jià)的總?cè)藬?shù);②競價(jià)采用一月一期制,當(dāng)月競價(jià)時(shí)間截止后,系統(tǒng)根據(jù)當(dāng)期汽車配額,按照競價(jià)人的出價(jià)從高到低分配名額.某人擬參加20206月份的汽車競價(jià),他為了預(yù)測最低成交價(jià),根據(jù)網(wǎng)站的公告,統(tǒng)計(jì)了最近5個(gè)月參與競價(jià)的人數(shù)(如下表)

月份

2020.01

2020.02

2020.03

2020.04

2020.05

月份編號(hào)

1

2

3

4

5

競拍人數(shù)(萬人)

0.5

0.6

1

1.4

1.7

1)由收集數(shù)據(jù)的散點(diǎn)圖發(fā)現(xiàn),可用線性回歸模型擬合競價(jià)人數(shù)y(萬人)與月份編號(hào)t之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求y關(guān)于t的線性回歸方程:,并預(yù)測20206月份(月份編號(hào)為6)參與競價(jià)的人數(shù);

2)某市場調(diào)研機(jī)構(gòu)對(duì)200位擬參加20206月份汽車競價(jià)人員的報(bào)價(jià)進(jìn)行了一個(gè)抽樣調(diào)查,得到如表所示的頻數(shù)表:

報(bào)價(jià)區(qū)間(萬元)

頻數(shù)

20

60

60

30

20

10

i)求這200位競價(jià)人員報(bào)價(jià)的平均值和樣本方差s2(同一區(qū)間的報(bào)價(jià)用該價(jià)格區(qū)間的中點(diǎn)值代替)

ii)假設(shè)所有參與競價(jià)人員的報(bào)價(jià)X可視為服從正態(tài)分布μσ2可分別由(i)中所示的樣本平均數(shù)s2估計(jì).2020年月6份計(jì)劃提供的新能源車輛數(shù)為3174,根據(jù)市場調(diào)研,最低成交價(jià)高于樣本平均數(shù),請(qǐng)你預(yù)測(需說明理由)最低成交價(jià).

參考公式及數(shù)據(jù):

①回歸方程,其中

③若隨機(jī)變量X服從正態(tài)分布

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】日,我國開始施行《個(gè)人所得稅專項(xiàng)附加扣除操作辦法》,附加扣除的專項(xiàng)包括子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息、住房租金、贍養(yǎng)老人.某單位有老年員工人,中年員工人,青年員工人,現(xiàn)采用分層抽樣的方法,從該單位員工中抽取人,調(diào)查享受個(gè)人所得稅專項(xiàng)附加扣除的情況,并按照員工類別進(jìn)行各專項(xiàng)人數(shù)匯總,數(shù)據(jù)統(tǒng)計(jì)如表:

專項(xiàng)員工人數(shù)

子女教育

繼續(xù)教育

大病醫(yī)療

住房貸款利息

住房租金

贍養(yǎng)老人

老員工

中年員工

青年員工

)在抽取的人中,老年員工、中年員工、青年員工各有多少人;

)從上表享受住房貸款利息專項(xiàng)扣除的員工中隨機(jī)選取人,記為選出的中年員工的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的短軸長為2,離心率.過橢圓的右焦點(diǎn)作直線l(不與軸重合)與橢圓交于不同的兩點(diǎn).

1)求橢圓的方程;

2)試問在軸上是否存在定點(diǎn),使得直線與直線恰好關(guān)于軸對(duì)稱?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面為直角梯形,,,為線段的中點(diǎn),底面,點(diǎn)是棱的中點(diǎn),平面與棱相交于點(diǎn)

1)求證:;

2)若所成的角為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

2)求曲線交點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的側(cè)面是正三角形,,且,,中點(diǎn).

1)求證:平面;

2)若平面平面,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足:對(duì)任意,若,則,且,設(shè),集合中元素的最小值記為;集合,集合中元素最小值記為.

1)對(duì)于數(shù)列:,求,

2)求證:;

3)求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案