設(shè)a=lg e,b=(lg e)2,c=lg,則(  )

A.a(chǎn)>b>c B.a(chǎn)>c>b

C.c>a>b D.c>b>a

 

B

【解析】∵1<e<3,則1<<e<e2<10.

∴0<lg e<1.則lglg e<lg e,

即c<a.又0<lg e<1,

∴(lg e)2<lg e,即b<a.同時(shí)c-b=lg e-(lg e)2=lg e(1-2 lg e)=lg e·lg>0.

∴c>b.故應(yīng)選B.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-4正弦型函數(shù)的圖象及應(yīng)用(解析版) 題型:選擇題

已知函數(shù)f(x)=Asin(x+φ)(A>0,0<φ<)的部分圖象如圖所示,P,Q分別為該圖象的最高點(diǎn)和最低點(diǎn),點(diǎn)P的坐標(biāo)為(2,A),點(diǎn)R的坐標(biāo)為(2,0).若∠PRQ=,則y=f(x)的最大值及φ的值分別是(  )

A.2 B.,

C., D.2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-8函數(shù)與方程(解析版) 題型:解答題

是否存在這樣的實(shí)數(shù)a,使函數(shù)f(x)=x2+(3a-2)x+a-1在區(qū)間[-1,3]上恒有一個(gè)零點(diǎn),且只有一個(gè)零點(diǎn)?若存在,求出a的取值范圍;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-7函數(shù)的圖象(解析版) 題型:解答題

若直線y=2a與函數(shù)y=|ax-1|(a>0且a≠1)的圖象有兩個(gè)公共點(diǎn),求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-7函數(shù)的圖象(解析版) 題型:選擇題

在函數(shù)y=|x|(x∈[-1,1])的圖象上有一點(diǎn)P(t,|t|),此函數(shù)與x軸、直線x=-1及x=t圍成圖形(如圖陰影部分)的面積為S,則S與t的函數(shù)關(guān)系圖象可表示為(  )

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-6對(duì)數(shù)與對(duì)數(shù)函數(shù)(解析版) 題型:填空題

如果函數(shù)y=f(x)圖象上任意一點(diǎn)的坐標(biāo)(x,y)都滿足方程lg(x+y)=lgx+lgy,那么y=f(x)在[2,4]上的最小值是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-5指數(shù)及指數(shù)函數(shù)(解析版) 題型:解答題

定義在[-1,1]上的奇函數(shù)f(x),已知當(dāng)x∈[-1,0]時(shí),

f(x)= (a∈R).

(1)求f(x)在[0,1]上的最大值;

(2)若f(x)是[0,1]上的增函數(shù),求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-4二次函數(shù)與冪函數(shù)(解析版) 題型:解答題

已知函數(shù)f(x)的圖象與函數(shù)h(x)=x++2的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱.

(1)求函數(shù)f(x)的解析式;

(2)若g(x)=f(x)+,g(x)在區(qū)間(0,2]上的值不小于6,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-2函數(shù)的單調(diào)性與最值(解析版) 題型:選擇題

函數(shù)y=的定義域是(-∞,1)∪[2,5),則其值域是(  )

A.(-∞,0)∪(,2] B.(-∞,2]

C.(-∞,)∪[2,+∞) D.(0,+∞)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案