給出下列命題:①已知
a
b
,則
a
•(
b
+
c
)+
c•
(
b
-
a
)
=
b
c
;②A,B,M,N為空間四點,若
BA
,
BM
BN
不構成空間的一個基底,那么A,B,M,N共面;③已知
a
b
,則
a
,
b
與任何向量都不構成空間的一個基底;④若
a
,
b
共線,則
a
b
所在直線或者平行或者重合.正確的結論為
①②④
①②④
分析:對于①,由條件可得
a
b
=0,把等式的左邊展開化簡可得它和燈飾的右邊相等,故①正確.
對于②,由條件可得
BA
,
BM
,
BN
這3個向量共面,故A、B、M、N共面,故②正確.
對于③,若
c
a
,
b
這3個向量不共面,則 {
a
,
b
 ,  
c
}
構成空間的一個基底,故③不正確.
對于④,直接根據(jù)課本定義可得其成立.
解答:解:①若
a
b
,則
a
b
=0,故
a
•(
b
+
c
)+
c•
(
b
-
a
)
=
a
b
+
a
c
+
c
b
-
c
a
=0+
c
b
=
b
c

故①正確.
②若
BA
,
BM
,
BN
不構成空間的一個基底,則
BA
,
BM
,
BN
這3個向量共面,故A、B、M、N共面,
故②正確.
③當
a
b
時,若
c
a
,
b
這3個向量不共面,則 {
a
,
b
 ,  
c
}
構成空間的一個基底,故③不正確.
④直接根據(jù)向量共線的定義可得其成立,故④正確.
綜上,①②④正確,③不正確.
故答案為:①②④.
點評:本題主要考查空間向量基本定理及其意義,三個向量能構成空間的基底的條件是,這三個向量不共面.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

8、設f(x)=x3+bx2+cx,又m是一個常數(shù).已知當m<0或m>4時,f(x)-m=0只有一個實根;當0<m<4時,f(x)-m=0有三個相異實根,現(xiàn)給出下列命題:
(1)f(x)-4=0和f'(x)=0有一個相同的實根;
(2)f(x)=0和f'(x)=0有一個相同的實根;
(3)f(x)+3=0的任一實根大于f(x)-1=0的任一實根;
(4)f(x)+5=0的任一實根小于f(x)-2=0的任一實根.其中錯誤命題的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三個互不重合的平面α,β,γ,且α∩β=a,α∩γ=b,β∩γ=c,給出下列命題:
①若a⊥b,a⊥c,則b⊥c;②若a∩b=P則a∩c=P;③若a⊥b,a⊥c,則α⊥γ;④若a∥b則a∥c.
其中正確命題個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①、已知函數(shù)y=f(x).(x∈R),則y=f(x-1)的圖象與y=f(1-x)的圖象關于直線x=1對稱;
②、設函數(shù)f(x)=cos(x+φ),則“f(x)為偶函數(shù)”的充要條件是“f'(0)=0”;
③、等比數(shù)列{an}的前n項和為Sn,則“公比q>0”是“數(shù)列{Sn}單增”的充要條件;
④、實數(shù)x,y,則“
x-y≥0
y≥0
x+y≤2
”是“|2y-x|≤2”的充分不必要條件.
其中真命題有
①②④
①②④
(寫出你認為正確的所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源:2011年四川省綿陽中學高考適應性檢測數(shù)學試卷(理科)(解析版) 題型:填空題

給出下列命題:
①、已知函數(shù)y=f(x).(x∈R),則y=f(x-1)的圖象與y=f(1-x)的圖象關于直線x=1對稱;
②、設函數(shù)f(x)=cos(x+φ),則“f(x)為偶函數(shù)”的充要條件是“f'(0)=0”;
③、等比數(shù)列{an}的前n項和為Sn,則“公比q>0”是“數(shù)列{Sn}單增”的充要條件;
④、實數(shù)x,y,則“”是“|2y-x|≤2”的充分不必要條件.
其中真命題有    (寫出你認為正確的所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

給出下列命題:
①、已知函數(shù)y=f(x).(x∈R),則y=f(x-1)的圖象與y=f(1-x)的圖象關于直線x=1對稱;
②、設函數(shù)f(x)=cos(x+φ),則“f(x)為偶函數(shù)”的充要條件是“f'(0)=0”;
③、等比數(shù)列{an}的前n項和為Sn,則“公比q>0”是“數(shù)列{Sn}單增”的充要條件;
④、實數(shù)x,y,則“數(shù)學公式”是“|2y-x|≤2”的充分不必要條件.
其中真命題有________(寫出你認為正確的所有真命題的序號).

查看答案和解析>>

同步練習冊答案