將函數(shù)f(x)=2sin(2x+
π
3
)圖象沿x軸向左平移m個(gè)單位(m>0),所得函數(shù)的圖象關(guān)于y軸對(duì)稱,則m的最小值為
 
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:由題意根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得y=2sin(2x+2m+
π
3
)的圖象關(guān)于y軸對(duì)稱,故有2m+
π
3
=kπ+
π
2
,由此求得m的最小正值.
解答: 解:將函數(shù)f(x)=2sin(2x+
π
3
)圖象沿x軸向左平移m個(gè)單位(m>0),可得函數(shù)y=2sin[2(x+m)+
π
3
]=2sin(2x+2m+
π
3
)的圖象,
再根據(jù)y=2sin(2x+2m+
π
3
)的圖象關(guān)于y軸對(duì)稱,
可得 2m+
π
3
=kπ+
π
2
,即 m=
2
+
π
12
,k∈z,故m的最小正值為
π
12
,
故答案為:
π
12
點(diǎn)評(píng):本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)、余弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

畫出下列函數(shù)的圖象
(1)y=
2x+1
x-1

(2)y=x2-2|x|
(3)y=|2x-1|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列共有10項(xiàng),其奇數(shù)項(xiàng)的和為15,偶數(shù)項(xiàng)的和為30,則該公比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=x,b=2,B=60°,若這樣的三角形有2個(gè),則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

側(cè)視圖和俯視圖相同的簡(jiǎn)單幾何體可以是
 
(寫出三種).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與雙曲線
x2
9
-
y2
7
=-1有相同焦點(diǎn),且離心率為0.8的橢圓方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用二分法求圖象連續(xù)不斷的函數(shù)f(x)在區(qū)間(1,5)上的近似解,驗(yàn)證f(1)•f(5)<0,給定精確度ε=0.01,取區(qū)間(1,5)的中點(diǎn)x1=
1+5
2
=3,計(jì)算得f(1)•f(x1)<0,f(x1)•f(5)>0,則此時(shí)零點(diǎn)x0
 
.(填區(qū)間)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科)若方程
x2
5-m
+
y2
m+3
=1是橢圓”,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R).求直線被圓C截得的弦長(zhǎng)最小時(shí)l的方程.(  )
A、x-2y-1=0
B、2x-y-5=0
C、2x+y-7=0
D、x+2y-5=0

查看答案和解析>>

同步練習(xí)冊(cè)答案