如圖是求
1
1×2
+
1
2×3
+
1
3×4
+…+
1
99×100
的算法的程序框圖.
(1)標(biāo)號①處填______,標(biāo)號②處填______.
精英家教網(wǎng)
k=1,滿足條件①,執(zhí)行循環(huán)體,S=
1
1×2

k=2,滿足條件①,執(zhí)行循環(huán)體,S=
1
1×2
+
1
2×3

依此類推
k=98,滿足條件①,執(zhí)行循環(huán)體,S=
1
1×2
+
1
2×3
+…
1
9×10

k=99,不滿足條件①,退出循環(huán)體,輸出S=
1
1×2
+
1
2×3
+
1
3×4
+…+
1
99×100
,
所以當(dāng)k=1,2,3…99滿足判斷框的條件,當(dāng)k=100不滿足判斷框的條件
所以判斷框①中的條件是k>99,
標(biāo)號②處作用是求和,故填S=S+
1
k(k+1)

故答案為:k>99;S=S+
1
k(k+1)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

楊輝是中國南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊(yùn)藏了許多優(yōu)美的規(guī)律.如圖是一個(gè)11階楊輝三角:
(1)求第20行中從左到右的第4個(gè)數(shù);
(2)若第n行中從左到右第14與第15個(gè)數(shù)的比為
2
3
,求n的值;
(3)求n階(包括0階)楊輝三角的所有數(shù)的和;
(4)在第3斜列中,前5個(gè)數(shù)依次為1,3,6,10,15;第4斜列中,第5個(gè)數(shù)為35.顯然,1+3+6+10+15=35.事實(shí)上,一般地有這樣的結(jié)論:第m斜列中(從右上到左下)前k個(gè)數(shù)之和,一定等于第m+1斜列中第k個(gè)數(shù).試用含有m、k(m,k∈N×)的數(shù)學(xué)公式表示上述結(jié)論,并給予證明.
第0行 1 第1斜列
第1行 1 1 第2斜列
第2行 1 2 1 第3斜列
第3行 1 3 3 1 第4斜列
第4行 1 4 6 4 1 第5斜列
第5行 1 5 10 10 5 1 第6斜列
第6行 1 6 15 20 15 6 1 第7斜列
第7行 1 7 21 35 35 21 7 1 第8斜列
第8行 1 8 28 56 70 56 28 8 1 第9斜列
第9行 1 9 36 84 126 126 84 36 9 1 第10斜列
第10行 1 10 45 120 210 252 210 120 45 10 1 第11斜列
第11行 1 11 55 165 330 462 462 330 165 55 11 1 第12斜列
11階楊輝三角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖是求
1
1×2
+
1
2×3
+
1
3×4
+…+
1
99×100
的算法的程序框圖.
(1)標(biāo)號①處填
 
,標(biāo)號②處填
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:中華一題 高中數(shù)學(xué)必修3·B版(配套人民教育出版社實(shí)驗(yàn)教科書) 人教版 題型:022

在下列程序框圖的空白處填空.

(1)如圖是求函數(shù)f(x)=x2-3x+5當(dāng)x∈{0,3,6,9,…,60}時(shí)函數(shù)值的一個(gè)程序框圖,①處應(yīng)為________;

(2)如圖是求S=1+2+4+7+11+…前20項(xiàng)和的程序框圖,②處應(yīng)填________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年高三(上)數(shù)學(xué)寒假作業(yè)13(選修系列2)(解析版) 題型:解答題

楊輝是中國南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊(yùn)藏了許多優(yōu)美的規(guī)律.如圖是一個(gè)11階楊輝三角:
(1)求第20行中從左到右的第4個(gè)數(shù);
(2)若第n行中從左到右第14與第15個(gè)數(shù)的比為,求n的值;
(3)求n階(包括0階)楊輝三角的所有數(shù)的和;
(4)在第3斜列中,前5個(gè)數(shù)依次為1,3,6,10,15;第4斜列中,第5個(gè)數(shù)為35.顯然,1+3+6+10+15=35.事實(shí)上,一般地有這樣的結(jié)論:第m斜列中(從右上到左下)前k個(gè)數(shù)之和,一定等于第m+1斜列中第k個(gè)數(shù).試用含有m、k(m,k∈N×)的數(shù)學(xué)公式表示上述結(jié)論,并給予證明.
第0行1第1斜列
第1行11第2斜列
第2行121第3斜列
第3行1331第4斜列
第4行14641第5斜列
第5行15101051第6斜列
第6行1615201561第7斜列
第7行172135352171第8斜列
第8行18285670562881第9斜列
第9行193684126126843691第10斜列
第10行1104512021025221012045101第11斜列
第11行1115516533046246233016555111第12斜列
11階楊輝三角

查看答案和解析>>

同步練習(xí)冊答案