已知f(2x+1)=x2-2x.
(1)求f(x);
(2)f(3)的值.
考點(diǎn):函數(shù)解析式的求解及常用方法
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用換元法,令2x+1=t,則x=
1
2
(t-1),即可求出函數(shù)的解析式,再代入值,求出函數(shù)值即可.
解答: 解:(1)令2x+1=t,則x=
1
2
(t-1),
∴f(t)=
1
4
(t-1)2-2(t-1)=
1
4
t2-
5
2
t+
9
4
,
∴f(x)=
1
4
x2-
5
2
x+
9
4
;
(2)由(1)知f(3)=
1
4
×32-
5
2
×3+
9
4
=-3.
點(diǎn)評(píng):本題考查了函數(shù)的解析式的求法和函數(shù)值得問(wèn)題,關(guān)鍵是利用換元法,屬于基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式是an=
1
n
+
n+1
,若前n項(xiàng)和為12,則項(xiàng)數(shù)n為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線
x2
16
-
y2
9
=1
上點(diǎn)P與兩焦點(diǎn)F1,F(xiàn)2連線的夾角為60°,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}滿(mǎn)足:a1=1,an+1=3an,n∈N+
(1)求{an}的通項(xiàng)公式及前n項(xiàng)和Sn
(2)已知{bn}是等差數(shù)列,且b1=a1,b3=a3,Tn為{anbn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱柱ABCD=A1B1C1D1的底面是矩形,E,F(xiàn),G,分別為AD,BC,A1D1的中點(diǎn),A1E⊥平面ABCD,DH⊥CG,H為垂直
(1)求證:A1F∥平面CDG
(2)求證:CG⊥平面ADH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為e=
2
5
5
,過(guò)右焦點(diǎn)作垂直于x軸的直線與橢圓相交于兩點(diǎn),且兩交點(diǎn)與橢圓的左焦點(diǎn)及右頂點(diǎn)構(gòu)成的四邊形面積為
8
5
5
+4.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)B(-2,0)的直線l與橢圓C交于P,Q兩點(diǎn),交圓O:x2+y2=8于M,N兩點(diǎn),若|MN|∈[4,2
7
],求△OPQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C的參數(shù)方程為
x=2cosα
y=3sinα
(α為參數(shù)),在極坐標(biāo)系中(極坐標(biāo)系與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸),直線l的極坐標(biāo)方程為p(3cosθ-2sinθ)=6
(I)求直線l的直角坐標(biāo)方程;
(Ⅱ)求曲線C上動(dòng)點(diǎn)P到直線l距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)
C
9
m
-
C
9
m+1
+
C
8
m
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知a=5,b=4,∠C=60°,則C邊長(zhǎng)為( 。
A、
21
B、
61
C、
41
D、5

查看答案和解析>>

同步練習(xí)冊(cè)答案