【題目】已知函數(shù).
(1)求的零點及單調區(qū)間;
(2)求證:曲線存在斜率為8的切線,且切點的縱坐標.
【答案】(1)零點為,單調遞增區(qū)間為,單調遞減區(qū)間為;(2)證明見解析.
【解析】
(1)求出方程的解即得零點,求出,討論其符號后可得函數(shù)的單調區(qū)間.
(2)利用單調性和零點存在定理可證有解且,結合該零點滿足的方程可證.
解:(1)的定義域為,令得.
又,
當時,,故單調遞增;
當時,,故單調遞減.
因此的零點為,單調遞增區(qū)間為,單調遞減區(qū)間為.
(2)先證明存在斜率為8的切線.
,
要證曲線存在斜率為8的切線,即證在有解.
令,則,
故在上單調遞減,
又,,
所以存在使得,得證.
接下來證明.
由上可知,.
因此,有
,
因為函數(shù)在單調遞減,因此,
因此,欲證命題成立.
科目:高中數(shù)學 來源: 題型:
【題目】阿基米德是古希臘偉大的哲學家、數(shù)學家、物理學家,對幾何學、力學等學科作出過卓越貢獻.為調查中學生對這一偉大科學家的了解程度,某調查小組隨機抽取了某市的100名高中生,請他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項的稱為“比較了解”,少于三項的稱為“不太了解”.他們的調查結果如下:
0項 | 1項 | 2項 | 3項 | 4項 | 5項 | 5項以上 | |
理科生(人) | 1 | 10 | 17 | 14 | 14 | 10 | 4 |
文科生(人) | 0 | 8 | 10 | 6 | 3 | 2 | 1 |
(1)完成如下列聯(lián)表,并判斷是否有的把握認為,了解阿基米德與選擇文理科有關?
比較了解 | 不太了解 | 合計 | |
理科生 | |||
文科生 | |||
合計 |
(2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.
(i)求抽取的文科生和理科生的人數(shù);
(ii)從10人的樣本中隨機抽取3人,用表示這3人中文科生的人數(shù),求的分布列和數(shù)學期望.
參考數(shù)據(jù):
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某貧困地區(qū)共有1500戶居民,其中平原地區(qū)1050戶,山區(qū)450戶.為調查該地區(qū)2017年家庭收入情況,從而更好地實施“精準扶貧”,采用分層抽樣的方法,收集了150戶家庭2017年年收入的樣本數(shù)據(jù)(單位:萬元).
(1)應收集多少戶山區(qū)家庭的樣本數(shù)據(jù)?
(2)根據(jù)這150個樣本數(shù)據(jù),得到2017年家庭收入的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為(0,0.5],(0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3].如果將頻率視為概率,估計該地區(qū)2017年家庭收入超過1.5萬元的概率;
(3)樣本數(shù)據(jù)中,有5戶山區(qū)家庭的年收入超過2萬元,請完成2017年家庭收入與地區(qū)的列聯(lián)表,并判斷是否有90%的把握認為“該地區(qū)2017年家庭年收入與地區(qū)有關”?
超過2萬元 | 不超過2萬元 | 總計 | |
平原地區(qū) | |||
山區(qū) | 5 | ||
總計 |
附:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年1月22日,國新辦發(fā)布消息:新型冠狀病毒來源于武漢一家海鮮市場非法銷售的野生動.專家通過全基因組比對發(fā)現(xiàn)此病毒與2003年的非典冠狀病毒以及此后的中東呼吸綜合征冠狀病毒,分別達到70%和40%的序列相似性.這種新型冠狀病毒對人們的健康生命帶來了嚴重威脅因此,某生物疫苗研究所加緊對新型冠狀病毒疫苗進行實驗,并將某一型號疫苗用在動物小白鼠身上進行科研和臨床實驗,得到統(tǒng)計數(shù)據(jù)如下:
未感染病毒 | 感染病毒 | 總計 | |
未注射疫苗 | 20 | ||
注射疫苗 | 30 | ||
總計 | 50 | 50 | 100 |
現(xiàn)從所有試驗小白鼠中任取一只,取到“注射疫苗”小白鼠的概率為.
(1)求列聯(lián)表中的數(shù)據(jù),,,的值;
(2)能否有99.9%把握認為注射此種疫苗對預防新型冠狀病毒有效?
附:.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在其定義域內單調遞增,求實數(shù)的取值范圍;
(2)是否存在實數(shù),使得函數(shù)的圖象與軸相切?若存在,求滿足條件的的取值范圍,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線過橢圓的右焦點,且交橢圓于A,B兩點,線段AB的中點是,
(1)求橢圓的方程;
(2)過原點的直線l與線段AB相交(不含端點)且交橢圓于C,D兩點,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為拋物線上的一點,,為拋物線上異于點的兩點,且直線的斜率與直線的斜率互為相反數(shù).
(1)求直線的斜率;
(2)設直線過點并交拋物線于,兩點,且,直線與軸交于點,試探究與的夾角是否為定值,若是則求出定值,若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的四棱錐中,四邊形是等腰梯形,,,平面,,.
(1)求證:平面;
(2)已知二面角的余弦值為,求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com