【題目】已知拋物線:的焦點為,為拋物線上一點,為坐標原點,的外接圓與拋物線的準線相切,且外接圓的周長為.
(1)求拋物線的方程;
(2)已知點,設不垂直于軸的直線與拋物線交于不同的兩點,,若,證明直線過定點并寫出定點坐標.
科目:高中數學 來源: 題型:
【題目】某地因受天氣,春季禁漁等因素影響,政府規(guī)定每年的7月1日以后的100天為當年的捕魚期.某漁業(yè)捕撈隊對噸位為的20艘捕魚船一天的捕魚量進行了統(tǒng)計,如下表所示:
捕魚量(單位:噸) | |||||
頻數 | 2 | 7 | 7 | 3 | 1 |
根據氣象局統(tǒng)計近20年此地每年100天的捕魚期內的晴好天氣情況如下表(捕魚期內的每個晴好天氣漁船方可捕魚,非晴好天氣不捕魚):
晴好天氣(單位:天) | |||||
頻數 | 2 | 7 | 6 | 3 | 2 |
(同組數據以這組數據的中間值作代表)
(Ⅰ)估計漁業(yè)捕撈隊噸位為的漁船單次出海的捕魚量的平均數;
(Ⅱ)已知當地魚價為2萬元/噸,此種捕魚船在捕魚期內捕魚時,每天成本為10萬元/艘,若不捕魚,每天成本為2萬元/艘,若以(Ⅰ)中確定的作為上述噸位的捕魚船在晴好天氣捕魚時一天的捕魚量.
①請依據往年天氣統(tǒng)計數據,試估計一艘此種捕魚船年利潤不少于1600萬元的概率;
②設今后3年中,此種捕魚船每年捕魚情況一樣,記一艘此種捕魚船年利潤不少于1600萬元的年數為,求的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】惠州市某學校需要從甲、乙兩名學生中選1人參加數學競賽,抽取了近期兩人5次數學考試的分數,統(tǒng)計結果如下表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
甲 | 80 | 85 | 71 | 92 | 87 |
乙 | 90 | 76 | 75 | 92 | 82 |
(1)若從甲、乙兩人中選出1人參加數學競賽,你認為選誰合適?請說明理由.
(2)若數學競賽分初賽和復賽,在初賽中答題方案如下:
每人從5道備選題中隨機抽取3道作答,若至少答對其中2道,則可參加復賽,否則被淘汰.假設被選中參賽的學生只會5道備選題中的3道,求該學生能進人復賽的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱的側面是平行四邊形,,平面平面,且分別是的中點.
(Ⅰ)求證:;
(Ⅱ)求證:平面;
(Ⅲ)在線段上是否存在點,使得平面?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以下四個命題中正確的是( )
A.空間的任何一個向量都可用其他三個向量表示
B.若為空間向量的一組基底,則構成空間向量的另一組基底
C.為直角三角形的充要條件是
D.任何三個不共線的向量都可構成空間向量的一個基底
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,四邊形ABCD是直角梯形,,,,M是棱PC上一點,且,平面MBD.
(1)求實數λ的值;
(2)若平面平面ABCD,為等邊三角形,且三棱錐P-MBD的體積為2,求PA的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以下5條表述中,橫線上填A代表“充分非必要條件”,填B代表“必要非充分條件”,填C代表“充要條件”,填D代表“既非充分也非必要條件”,請將相應的字母填入下列橫線上.
(1)若,則“是與的等比中項”是“”的_______.
(2)“數列為常數列”是“數列既是等差數列又是等比數列”的_______.
(3)若是等比數列,則“”是“為遞減數列”的_______.
(4)若是公比為的等比數列,則“”是“是遞減數列”的_______.
(5)記數列的前項和為,則“數列為遞增數列”是“數列的各項均為大于零”的_______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“科技引領,布局未來”科技研發(fā)是企業(yè)發(fā)展的驅動力量.2007年至2018年,某企業(yè)連續(xù)12年累計研發(fā)投入達4100億元,我們將研發(fā)投入與經營收入的比值記為研發(fā)投入占營收比.這12年間的研發(fā)投入(單位:十億元)用圖中的條形圖表示,研發(fā)投入占營收比用圖中的折線圖表示.
根據折線圖和條形圖,下列結論錯誤的是( 。
A. 2012﹣2013 年研發(fā)投入占營收比增量相比 2017﹣2018 年增量大
B. 該企業(yè)連續(xù) 12 年研發(fā)投入逐年增加
C. 2015﹣2016 年研發(fā)投入增值最大
D. 該企業(yè)連續(xù) 12 年研發(fā)投入占營收比逐年增加
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com