【題目】水培植物需要一種植物專用營養(yǎng)液.已知每投放(且)個單位的營養(yǎng)液,它在水中釋放的濃度(克/升)隨著時間(天)變化的函數(shù)關(guān)系式近似為,其中,若多次投放,則某一時刻水中的營養(yǎng)液濃度為每次投放的營養(yǎng)液在相應(yīng)時刻所釋放的濃度之和,根據(jù)經(jīng)驗,當(dāng)水中營養(yǎng)液的濃度不低于4(克/升)時,它才能有效.
(1)若只投放一次4個單位的營養(yǎng)液,則有效時間可能達(dá)幾天?
(2)若先投放2個單位的營養(yǎng)液,3天后投放個單位的營養(yǎng)液.要使接下來的2天中,營養(yǎng)液能夠持續(xù)有效,試求的最小值.
【答案】(1);(2).
【解析】試題分析:
(1)由題意得到關(guān)于x的不等式,求解不等式可知營養(yǎng)液有效時間可達(dá)4天.
(2)利用題意結(jié)合對勾函數(shù)的性質(zhì)可得的最小值為.
試題解析:
(1)∵營養(yǎng)液有效則需滿足,則或,解得,
所以營養(yǎng)液有效時間可達(dá)4天.
(2)設(shè)第二次投放營養(yǎng)液的持續(xù)時間為天,則此時第一次投放營養(yǎng)液的持續(xù)時間為天,且;設(shè)為第一次投放營養(yǎng)液的濃度,為第二次投放營養(yǎng)液的濃度,為水中的營養(yǎng)液的濃度;
∴,,
在上恒成立
∴在上恒成立
令,,
又,當(dāng)且僅當(dāng),即時,取等號;
所以的最小值為.
答:要使接下來的2天中,營養(yǎng)液能夠持續(xù)有效,的最小值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列是首項為0的遞增數(shù)列,,滿足:對于任意的總有兩個不同的根,則的通項公式為_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動點在拋物線上,過點作垂直于軸,垂足為,設(shè).
(Ⅰ)求點的軌跡的方程;
(Ⅱ)設(shè)點,過點的直線交軌跡于兩點,直線的斜率分別為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為方便市民休閑觀光,市政府計劃在半徑為200米,圓心角為的扇形廣場內(nèi)(如圖所示),沿邊界修建觀光道路,其中分別在線段上,且兩點間距離為定長米.
(1)當(dāng)時,求觀光道段的長度;
(2)為提高觀光效果,應(yīng)盡量增加觀光道路總長度,試確定圖中兩點的位置,使觀光道路總長度達(dá)到最長?并求出總長度的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,GH是東西方向的公路北側(cè)的邊緣線,某公司準(zhǔn)備在GH上的一點B的正北方向的A處建設(shè)一倉庫,設(shè),并在公路北側(cè)建造邊長為的正方形無頂中轉(zhuǎn)站CDEF(其中EF在GH上),現(xiàn)從倉庫A向GH和中轉(zhuǎn)站分別修兩條道路AB,AC,已知AB=AC+1,且.
(1)求關(guān)于的函數(shù)解析式,并求出定義域;
(2)如果中轉(zhuǎn)站四堵圍墻造價為10萬元/km,兩條道路造價為30萬元/km,問:取何值時,該公司建設(shè)中轉(zhuǎn)站圍墻和兩條道路總造價M最低.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高二數(shù)學(xué)期中測試中,為了了解學(xué)生的考試情況,從中抽取了個學(xué)生的成績(滿分為100分)進(jìn)行統(tǒng)計.按照[50,60), [60,70), [70,80), [80,90), [90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出得分在[50,60), [90,100]的數(shù)據(jù)).
(1)求樣本容量和頻率分布直方圖中的值;
(2)在選取的樣本中,從成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取3名參加志愿者活動,所抽取的3名同學(xué)中至少有一名成績在[90,100]內(nèi)的概率。.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(必須列式,不能只寫答案,答案用數(shù)字表示)有4個不同的球,四個不同的盒子,把球全部放入盒內(nèi).
(1)求共有多少種放法;
(2)求恰有一個盒子不放球,有多少種放法;
(3)求恰有兩個盒內(nèi)不放球,有多少種放法;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)的導(dǎo)函數(shù)為,且滿足,,當(dāng)時有恒成立,若非負(fù)實數(shù)、滿足,,則的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某海域有兩個島嶼,島在島正東4海里處,經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線是曲線,曾有漁船在距島、島距離和為8海里處發(fā)出過魚群。以所在直線為軸,的垂直平分線為軸建立平面直角坐標(biāo)系.
(1)求曲線的標(biāo)準(zhǔn)方程;
(2)某日,研究人員在兩島同時用聲納探測儀發(fā)出不同頻率的探測信號(傳播速度相同),兩島收到魚群在處反射信號的時間比為,問你能否確定處的位置(即點的坐標(biāo))?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com