【題目】已知函數(shù) 若關(guān)于的不等式的解集非空,且為有限集,則實數(shù)的取值集合為___________.
【答案】
【解析】
利用導(dǎo)數(shù),研究的性質(zhì)和圖像;利用換元法,結(jié)合二次不等式的解集,結(jié)合的函數(shù)圖像,即可分類討論求得.
當時,,則,令,解得,
容易得在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,
且在時,取得極小值,即;且時,;
當時,,則,令,解得,
容易得在區(qū)間單調(diào)遞增,在區(qū)間單調(diào)遞減,
且在時,取得極大值,即;且時,;
故的模擬圖像如下所示:
綜上所述:的值域為.
令,則,其,對稱軸為:
當時,顯然關(guān)于的二次不等式解集為空集,不滿足題意;
當,即或時,
若,顯然關(guān)于的二次不等式的解集為,又,
數(shù)形結(jié)合可知,此時關(guān)于的原不等式解集為空集,不滿足題意;
若,關(guān)于的二次不等式的解集為,又,
數(shù)形結(jié)合可知,此時關(guān)于的原不等式解集為,滿足題意;
當,即或時,
令,解得,
顯然,故此時關(guān)于的不等式的解集為,
數(shù)形結(jié)合可知,要滿足題意,只需或.
即,解得,滿足或;
或,解得,不滿足或,舍去;
綜上所述,要滿足題意,則或.
故答案為:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場進行有獎促銷活動,顧客購物每滿500元,可選擇返回50元現(xiàn)金或參加一次抽獎,抽獎規(guī)則如下:從1個裝有6個白球、4個紅球的箱子中任摸一球,摸到紅球就可獲得100元現(xiàn)金獎勵,假設(shè)顧客抽獎的結(jié)果相互獨立.
(Ⅰ)若顧客選擇參加一次抽獎,求他獲得100元現(xiàn)金獎勵的概率;
(Ⅱ)某顧客已購物1500元,作為商場經(jīng)理,是希望顧客直接選擇返回150元現(xiàn)金,還是選擇參加3次抽獎?說明理由;
(Ⅲ)若顧客參加10次抽獎,則最有可能獲得多少現(xiàn)金獎勵?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市房產(chǎn)中心數(shù)據(jù)研究顯示,2018年該市新建住宅銷售均價如下表.3月至7月房價上漲過快,為抑制房價過快上漲,政府從8月份開始出臺了相關(guān)限購政策,10月份開始房價得到了很好的抑制.
均價(萬元/) | 0.95 | 0.98 | 1.11 | 1.12 | 1.20 | 1.22 | 1.32 | 1.34 | 1.16 | 1.06 |
月份 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
(Ⅰ)請建立3月至7月線性回歸模型(保留小數(shù)點后3位),并預(yù)測若政府不宏觀調(diào)控,12月份該市新建住宅銷售均價;
(Ⅱ)試用相關(guān)系數(shù)說明3月至7月各月均價(萬元/)與月份之間可用線性回歸模型(保留小數(shù)點后2位)
參考數(shù)據(jù):,,,,
回歸方程斜率和截距最小二乘法估計公式;
相關(guān)系數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的短軸長為2,直線被橢圓截得的線段長為,為坐標原點.
(1)求橢圓的方程;
(2)是否存在過點且斜率為的直線,與橢圓交于、兩點時,作線段的垂直平分線分別交軸、軸于、,垂足為,使得與的面積相等,若存在,試求出直線的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年,新冠狀肺炎疫情牽動每一個中國人的心,危難時刻眾志成城,共克時艱,為疫區(qū)助力.福建省漳州市東山縣共101個海鮮商家及個人為緩解武漢物質(zhì)壓力,募捐價值百萬的海鮮輸送武漢.東山島,別稱陵島,形似蝴蝶亦稱蝶島,隸屬于福建省漳州市東山縣,是福建省第二大島,中國第七大島,介于廈門市和廣東省汕頭之間,東南是著名的閩南漁場和粵東漁場交匯處,因地理位置發(fā)展海產(chǎn)品養(yǎng)殖業(yè)具有得天獨厚的優(yōu)勢.根據(jù)養(yǎng)殖規(guī)模與以往的養(yǎng)殖經(jīng)驗,某海鮮商家的海產(chǎn)品每只質(zhì)量(克)在正常環(huán)境下服從正態(tài)分布.
(1)隨機購買10只該商家的海產(chǎn)品,求至少買到一只質(zhì)量小于265克該海產(chǎn)品的概率;
(2)2020年該商家考慮增加先進養(yǎng)殖技術(shù)投入,該商家欲預(yù)測先進養(yǎng)殖技術(shù)投入為49千元時的年收益增量.現(xiàn)用以往的先進養(yǎng)殖技術(shù)投入(千元)與年收益增量(千元).的數(shù)據(jù)繪制散點圖,由散點圖的樣本點分布,可以認為樣本點集中在曲線的附近,且,,其中.根據(jù)所給的統(tǒng)計量,求y關(guān)于x的回歸方程,并預(yù)測先進養(yǎng)殖技術(shù)投入為49千元時的年收益增量.
附:若隨機變量,則;
對于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為.(為參數(shù))以坐標原點為極點,軸的正半軸為極軸建立極坐標系,點的極坐標為,直線的極坐標方程為.
(1)求的直角坐標和 l的直角坐標方程;
(2)把曲線上各點的橫坐標伸長為原來的倍,縱坐標伸長為原來的倍,得到曲線,為上動點,求中點到直線距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的參數(shù)方程為(為參數(shù)),直線經(jīng)過點且傾斜角為.
(1)求曲線的極坐標方程和直線的參數(shù)方程;
(2)已知直線與曲線交于,滿足為的中點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若恒成立,.求的最大值;
(2)若函數(shù)有且只有一個零點,且滿足條件的,使不等式恒成立,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,點,點,動圓與軸相切于點,過點的直線與圓相切于點,過點的直線與圓相切于點(均不同于點),且與交于點,設(shè)點的軌跡為曲線.
(1)證明:為定值,并求的方程;
(2)設(shè)直線與的另一個交點為,直線與交于兩點,當三點共線時,求四邊形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com