【題目】已知函數(shù).

1)試討論函數(shù)的極值點(diǎn)的個(gè)數(shù);

2)若,且恒成立,求a的最大值.

參考數(shù)據(jù):

1.6

1.7

1.74

1.8

10

4.953

5.474

5.697

6.050

22026

0.470

0.531

0.554

0.588

2.303

【答案】1)當(dāng)時(shí),沒(méi)有極值點(diǎn);時(shí),有唯一極大值點(diǎn),沒(méi)有極小值點(diǎn);(210.

【解析】

1)根據(jù)函數(shù)解析式,求得導(dǎo)函數(shù),對(duì)分類(lèi)討論即可由函數(shù)單調(diào)性確定極值點(diǎn).

2)由(1)可知當(dāng)時(shí),有唯一極大值點(diǎn),由恒成立代入化簡(jiǎn)可知,根據(jù)零點(diǎn)存在定理可知,從而討論討論,即可確定a的最大值,再代入檢驗(yàn).

1)函數(shù),定義域?yàn)?/span>

,

當(dāng)時(shí),在定義域單調(diào)遞減,沒(méi)有極值點(diǎn);

當(dāng)時(shí),單調(diào)遞減且圖像連續(xù),

,時(shí),

∴存在唯一正數(shù),使得,

函數(shù)單調(diào)遞增,在單調(diào)遞減,

∴函數(shù)有唯一極大值點(diǎn),沒(méi)有極小值點(diǎn),

綜上:當(dāng)時(shí),沒(méi)有極值點(diǎn);

當(dāng)時(shí),有唯一極大值點(diǎn),沒(méi)有極小值點(diǎn).

2)由(1)知,當(dāng)時(shí),有唯一極大值點(diǎn),

恒成立,

,∴,

,則單調(diào)遞增,

由于,,

∴存在唯一正數(shù),使得,從而.

由于恒成立,

①當(dāng)時(shí),成立;

②當(dāng)時(shí),由于,

.

,當(dāng)時(shí),,

單調(diào)遞減,從而,

,且,且,

.

下面證明時(shí),.

,且單調(diào)遞減,由于,

∴存在唯一,使得,

.

,易知單調(diào)遞減,

,即時(shí),.

a的最大值是10.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)、是橢圓的左、右頂點(diǎn),為橢圓上異于的一點(diǎn).

1是橢圓的上頂點(diǎn),且直線與直線垂直,求點(diǎn)軸的距離;

2)過(guò)點(diǎn)的直線(不過(guò)坐標(biāo)原點(diǎn))與橢圓交于、兩點(diǎn),且點(diǎn)軸上方,點(diǎn)軸下方,若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的短軸長(zhǎng)為,離心率為.

(1)求橢圓的方程;

(2)若動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),分別過(guò)兩點(diǎn)作,垂足分別為,且記為點(diǎn)到直線的距離, 為點(diǎn)到直線的距離,為點(diǎn)到點(diǎn)的距離,試探索是否存在最大值.若存在,求出最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為0),過(guò)點(diǎn)的直線的參數(shù)方程為t為參數(shù)),直線與曲線C相交于A,B兩點(diǎn).

)寫(xiě)出曲線C的直角坐標(biāo)方程和直線的普通方程;

)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,直線的參數(shù)方程為,(為參數(shù)).直線與曲線交于兩點(diǎn).

1)寫(xiě)出曲線的直角坐標(biāo)方程和直線的普通方程.

2)設(shè),若成等比數(shù)列,求和的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,軸上方的點(diǎn)在拋物線上,且,直線與拋物線交于,兩點(diǎn)(點(diǎn),不重合),設(shè)直線,的斜率分別為,.

(Ⅰ)求拋物線的方程;

(Ⅱ)當(dāng)時(shí),求證:直線恒過(guò)定點(diǎn)并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,軸上方的點(diǎn)在拋物線上,且,直線與拋物線交于兩點(diǎn)(點(diǎn),不重合),設(shè)直線,的斜率分別為.

(Ⅰ)求拋物線的方程;

(Ⅱ)當(dāng)時(shí),求證:直線恒過(guò)定點(diǎn)并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某小區(qū)抽取50戶居民進(jìn)行月用電量調(diào)查,發(fā)現(xiàn)其用電量都在50到350度之間,將用電量的數(shù)據(jù)繪制成頻率分布直方圖如下.

(1)求頻率分布直方圖中的值并估計(jì)這50戶用戶的平均用電量;

(2)若將用電量在區(qū)間內(nèi)的用戶記為類(lèi)用戶,標(biāo)記為低用電家庭,用電量在區(qū)間內(nèi)的用戶記為類(lèi)用戶,標(biāo)記為高用電家庭,現(xiàn)對(duì)這兩類(lèi)用戶進(jìn)行問(wèn)卷調(diào)查,讓其對(duì)供電服務(wù)進(jìn)行打分,打分情況見(jiàn)莖葉圖:

①?gòu)?/span>類(lèi)用戶中任意抽取3戶,求恰好有2戶打分超過(guò)85分的概率;

②若打分超過(guò)85分視為滿意,沒(méi)超過(guò)85分視為不滿意,請(qǐng)?zhí)顚?xiě)下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“滿意度與用電量高低有關(guān)”?

滿意

不滿意

合計(jì)

類(lèi)用戶

類(lèi)用戶

合計(jì)

附表及公式:

<>0.050

0.010

0.001

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著經(jīng)濟(jì)的不斷發(fā)展和人們消費(fèi)觀念的不斷提升,越來(lái)越多的人日益喜愛(ài)旅游觀光.某人想在20195月到某景區(qū)旅游觀光,為了避開(kāi)旅游高峰擁擠,方便出行,他收集了最近5個(gè)月該景區(qū)的觀光人數(shù)數(shù)據(jù)見(jiàn)下表:

月份

2018.12

2019.1

2019.2

2019.3

2019.4

月份編號(hào)

1

2

3

4

5

旅游觀光人數(shù)(百萬(wàn)人)

0.5

0.6

1

1.4

1.7

1)由收集數(shù)據(jù)的散點(diǎn)圖發(fā)現(xiàn),可用線性回歸模型擬合旅游觀光人數(shù)少(百萬(wàn)人)與月份編號(hào)之間的相關(guān)關(guān)系,請(qǐng)用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測(cè)20195月景區(qū)的旅游觀光人數(shù).

2)當(dāng)?shù)芈糜尉譃榱祟A(yù)測(cè)景區(qū)給當(dāng)?shù)氐呢?cái)政帶來(lái)的收入狀況,從20194月的旅游觀光人群中隨機(jī)抽取了200人,并對(duì)他們旅游觀光過(guò)程中的開(kāi)支情況進(jìn)行了調(diào)查,得到如下頻率分布表:

開(kāi)支金額(千元)

頻數(shù)

10

30

40

60

30

20

10

若采用分層抽樣的方法從開(kāi)支金額低于4千元的游客中抽取8人,再在這8人中抽取3人,記這3人中開(kāi)支金額低于3千元的人數(shù)為,求的分布列和數(shù)學(xué)期望.

(參考公式:,其中,.)

查看答案和解析>>

同步練習(xí)冊(cè)答案