已知點在圓上,點關(guān)于直線的對稱點也在圓上,則。
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高三12月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖所示,已知圓為圓上一動點,點是線段的垂直平分線與直線的交點.
(1)求點的軌跡曲線的方程;
(2)設(shè)點是曲線上任意一點,寫出曲線在點處的切線的方程;(不要求證明)
(3)直線過切點與直線垂直,點關(guān)于直線的對稱點為,證明:直線恒過一定點,并求定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高三12月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖所示,已知圓為圓上一動點,點是線段的垂直平分線與直線的交點.
(1)求點的軌跡曲線的方程;
(2)設(shè)點是曲線上任意一點,寫出曲線在點處的切線的方程;(不要求證明)
(3)直線過切點與直線垂直,點關(guān)于直線的對稱點為,證明:直線恒過一定點,并求定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東濟南外國語高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
已知點在圓上,點關(guān)于直線的對稱點也在圓上,則。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆河南安陽一中高二第一次階段測試數(shù)學(xué)試卷(奧數(shù)班)(解析版) 題型:解答題
已知焦點在軸上的雙曲線的兩條漸近線過坐標(biāo)原點,且兩條漸近線與以
點 為圓心,1為半徑的圓相切,又知的一個焦點與A關(guān)于直線對稱.
(1)求雙曲線的方程;
(2)設(shè)直線與雙曲線的左支交于,兩點,另一直線經(jīng)過 及的中點,求直線在軸上的截距的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com