【題目】在股票市場上,投資者常根據(jù)股價每股的價格走勢圖來操作,股民老張在研究某只股票時,發(fā)現(xiàn)其在平面直角坐標系內(nèi)的走勢圖有如下特點:每日股價與時間的關(guān)系在ABC段可近似地用函數(shù)的圖象從最高點A到最低點C的一段來描述如圖,并且從C點到今天的D點在底部橫盤整理,今天也出現(xiàn)了明顯的底部結(jié)束信號.老張預(yù)測這只股票未來一段時間的走勢圖會如圖中虛線DEF段所示,且DEF段與ABC段關(guān)于直線l對稱,點BD的坐標分別是

請你幫老張確定a,的值,并寫出ABC段的函數(shù)解析式;

如果老張預(yù)測準確,且今天買入該只股票,那么買入多少天后股價至少是買入價的兩倍?

【答案】(1),,,;(2)16.

【解析】

B,D的坐標確定的值,和C的坐標,進而確定周期,求出,再由C的坐標,求出,即可得出函數(shù)解析式;

(2)(1)線求出DEF的解析式,令,求出即可.

解:因為BD的坐標分別是,且DEF段與ABC段關(guān)于直線l對稱,所以,所以,,

,,

可得,

,

由題意得DEF的解析式為:

,得

故買入天后股價至少是買入價的兩倍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)當(dāng)時,求的單調(diào)區(qū)間;

2)①證明:當(dāng)時,函數(shù)上恰有一個極值點;

②求實數(shù)的取值范圍,使得對任意的,恒有成立.

注:為自然對數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下四個說法,其中正確的說法是(

A.殘差點分布的帶狀區(qū)域的寬度越窄相關(guān)指數(shù)越;

B.在刻畫回歸模型的擬合效果時,相關(guān)指數(shù)的值越大,說明擬合的效果越好;

C.在回歸直線方程中,當(dāng)解釋變量每增加一個單位時,預(yù)報變量平均增加0.2個單位;

D.對分類變量,若它們的隨機變量的觀測值越小,則判斷“有關(guān)系”的把握程度越大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,為實參數(shù).求所有的數(shù)對,使得函數(shù)在區(qū)間內(nèi)恰好有2011個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若無窮數(shù)列滿足:,當(dāng),時.

其中表示,,中的最大項,有以下結(jié)論:

若數(shù)列是常數(shù)列,則

若數(shù)列是公差的等差數(shù)列,則;

若數(shù)列是公比為q的等比數(shù)列,則

則其中正確的結(jié)論是______寫出所有正確結(jié)論的序號

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某運動員每次射擊命中不低于8環(huán)的概率為,命中8環(huán)以下的概率為,現(xiàn)用隨機模擬的方法估計該運動員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率:先用計算器產(chǎn)生09之間取整數(shù)值的隨機數(shù).指定0、1、2、3、4、5表示命中不低于8環(huán),6、78、9表示命中8環(huán)以下,再以三個隨機數(shù)作為一組.代表三次射擊的結(jié)果,產(chǎn)生如下20組隨機數(shù):

524207443815510013429966027954

576086324409472796544917460962

據(jù)此估計,該運動員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱中,底面,,四邊形是邊長為4的菱形,分別是線段的兩個三等分點.

(1)求證:平面;

(2)求四棱柱的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小張、小李、小華、小明四人玩輪流投擲一枚標準色子的游戲.若有一人投到的數(shù)最小,且無人與他并列,則判他獲勝;若投出最小數(shù)的人多于一個,則將沒投出最小數(shù)的人先淘汰,再讓剩下的人重新做一輪游戲,這樣不斷地進行下去,直到某個人勝出為止.已知第一個投擲色子的小張投到了數(shù)3.則他獲勝的概率是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在銳角中,角,,所對的邊分別為,,,且

(1)求角大。

(2)當(dāng)時,求的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案