(12分)已知橢圓C的焦點(diǎn)為,長(zhǎng)軸長(zhǎng)為6,
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知過(guò)點(diǎn)且斜率為1的直線交橢圓C于A 、B兩點(diǎn),求線段AB的長(zhǎng)度.

(1)
(2)
解:(1)由,長(zhǎng)軸長(zhǎng)為6 得:所以∴橢圓方程為……6分
(2)設(shè),由⑴可知橢圓方程為①,
∵直線AB的方程為        ② 7分
把②代入①得化簡(jiǎn)并整理得
  9分又12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知直線過(guò)橢圓的右焦點(diǎn),拋物線:的焦點(diǎn)為橢圓的上頂點(diǎn),且直線交橢圓、兩點(diǎn),點(diǎn)、、 在直線上的射影依次為點(diǎn)、、
(1)求橢圓的方程;
(2)若直線ly軸于點(diǎn),且,當(dāng)變化時(shí),探求的值是否為定值?若是,求出的值,否則,說(shuō)明理由;
(3)連接、,試探索當(dāng)變化時(shí),直線是否相交于定點(diǎn)?若是,請(qǐng)求出定點(diǎn)的坐標(biāo),并給予證明;否則,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分10分)已知m>1,直線,橢圓分別為橢圓的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線過(guò)右焦點(diǎn)時(shí),求直線的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),的重心分別為.若原點(diǎn)在以線段為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(14分)已知焦點(diǎn)在X軸的橢圓,焦點(diǎn)為、,焦距為,(1)求橢圓方程,(2)若是橢圓上一點(diǎn),且,求的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)是⊙上的任意一點(diǎn),過(guò)垂直軸于,動(dòng)點(diǎn)滿足

(1)求動(dòng)點(diǎn)的軌跡方程;
(2)已知點(diǎn),在動(dòng)點(diǎn)的軌跡上是否存在兩個(gè)不重合的兩點(diǎn),使 (O是坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

直線l的方程為y=x+3,在l上任取一點(diǎn)P,若過(guò)點(diǎn)P且以雙曲線12-4=3的焦點(diǎn)為橢圓的焦點(diǎn)作橢圓,那么具有最短長(zhǎng)軸的橢圓方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

P是橢圓上的動(dòng)點(diǎn), 作PDy軸, D為垂足, 則PD中點(diǎn)的軌跡方程為  (    )
A         B       C     D

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓中心在原點(diǎn),一個(gè)焦點(diǎn)為,且長(zhǎng)軸是短軸長(zhǎng)的2倍,則該橢圓的標(biāo)準(zhǔn)方程是              。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的焦距等于2 ,則的值為                     (   )
A.5或3B.5C.8D.16

查看答案和解析>>

同步練習(xí)冊(cè)答案